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Privacy is not about having something to
hide, it’s about the right to control what you
want to keep to yourself. (Bruce Schneier)
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Resumo

Dados coletados de usuários são o ouro da era moderna, e a capacidade de coletá-los é
tão crucial quanto a de armazená-los e manipulá-los com segurança. Esta é uma tese
no formato de coletânea, composta por artigos publicados ou em processo de revisão,
que exploram diferentes aspectos da computação que preserva a privacidade, como a
implementação eficiente de primitivas, protocolos e aplicações. Nosso trabalho oferece um
framework para um banco de dados sempre cifrado, que pode armazenar criptogramas e
responder a queries cifradas sem necessidade de decifração. Na mesma direção, também
estudamos o caso de coleta de dados em larga escala de medidores inteligentes. Nesse
contexto, uma entidade, como o fornecedor de eletricidade, coleta dados do usuário que
podem ser usados em métodos estatísticos como aprendizado de máquina, e realiza a
computação multiparte através de uma rede sem revelar as informações do usuário aos nós.
Por outro lado, também apresentamos trabalhos que exploram a implementação eficiente
da aritmética usada por esquemas modernos de criptografia completamente homomórfica,
como BFV e CKKS. Experimentamos diferentes métodos visando a arquitetura CUDA
e mostramos como os criptossistemas podem ser acelerados através da escolha adequada
da estrutura de dados, localidade e algoritmo usado na multiplicação polinomial. Quatro
trabalhos são apresentados tratando desses tópicos, assim como uma discussão que conecta
o trabalho.



Abstract

Data is the gold of the modern era, and the capability of collecting it is as crucial as
securely storing and handling it. This is a compilation thesis composed of published
or under revision papers that explore different aspects of privacy-preserving computing,
such as the efficient implementation of primitives, protocols, and applications. Our work
offers a framework for an always-encrypted database, which can store ciphertexts and
answer encrypted queries without decryption. In the same direction, we also study the
case of large-scale data collection from smart meters. In this case, an entity, such as
the electricity provider, collects user data that can be used in statistical methods, such
as machine learning, and splits the computation through a network without revealing
user information. On the other hand, we also present papers that explore the efficient
implementation of the arithmetic used by modern fully homomorphic encryption schemes,
such as BFV and the CKKS. We experiment with different methods targeting the CUDA
architecture and show how the cryptosystems can be accelerated through the proper choice
for the data structure, locality, and algorithm used on the polynomial multiplication. Four
papers are presented on these topics, as well as a discussion that connects our work during
the years of research.
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Chapter 1

Introduction

The need of user data for behavior forecast and advertising outbreaks the valuation of
information, turning it into modern-era gold. Thus, as important as being capable of
processing and extracting useful information from data is to protect it from breaches.
Accomplishing this task implies looking after the business itself and its users.

How to efficiently collect and compute user data without undermining their privacy
is an open problem. As remarked by Narayanan and Felten, “data privacy is a hard
problem” [24]. System breaches may happen even when data holders choose the most
conservative practice and never share data.

The Breach Level Index compiles information from surveys of security professionals
and executives of IT teams around the globe. It reports that in 2016 about 75% of
data breaches led to financial fraud. Almost 7000 records per minute were leaked only
in the first half of 2017, totaling 2 billion. Of these, only 4.6% were encrypted. That
is, most emails, vehicle registration details, payment information, medical records, and
other leaked information were in plaintext [29, 20]. In 2019, over 40% of the companies
stated that they stored sensitive data on Software as a Service (Saas), Infrastructure as
a Service (Iaas), or Platform as a Service (Paas) environments, and a large fraction used
other third-party solutions that are also out of the direct control of the main company,
as social media and mobile payment solutions. Nevertheless, less than 56% used basic
security solutions such as file system and database encryption, and about 30% reported
intentions to improve that in the following 12 months [33].

In 2020 and 2021, most companies had to adapt their work environment to fit the
COVID-19 pandemic constraints. This implied that a considerable fraction of the em-
ployees shifted to remote work and the accelerated use of cloud-based infrastructure to
accommodate the related needs. However, only 20% of the companies indicated that
their security infrastructure was ready to deal with this. Moreover, almost half were not
confident in the reliability of their access security system. Conflicting with what was
observed in the previous years, only 17% reported that most of their sensitive data in the
cloud were encrypted. But still, about half of the respondents say that more than 41% of
their workloads and data resides in external clouds [34]. In other words, companies that
were not competently handling the security of the data they stored had to accommodate
even higher security constraints rapidly. Large amounts of data have been collected every
year, leakage has not been sufficiently mitigated, and still, the trend in the industry is to
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embrace solutions that increase the attack surface.
Even data anonymization may not be sufficient to protect data secrecy. The literature

has shown that information contained in different social networks may be used to recognize
the same person in different networks [23], which considerably increases the knowledge
acquisition regarding particular individuals, as demographics and interests. Some works
claim more than 80% success ratio on de-anonymization [31]. The severity of such an issue
fast increased during the current social-network era, when users became used to give up
their data freely. Still, it was already feasible even before that with less rich and simpler
datasets, as shown by Narayanan and Shmatikov [25].

Brazil recently sanctioned the General Data Protection Law (LGPD) 1, which is closely
inspired by the European General Data Protection Regulation (GDPR) [27]. It clearly
states that companies are fully responsible for protecting the collected data, which should
only be collected with explicit user consent. Moreover, the companies are accountable for
the security of the collected, transmitted, stored, or processed data. Thus, even a third
party hired to execute computation on collected data may be subject to legal sanctions
in the case of a break of data secrecy.

An approach to develop solutions that preserve privacy is to keep data encrypted
throughout its lifespan: transportation, storage, and processing. Doing this, a new secu-
rity fence is set, tying data secrecy to formal guarantees. This can be done by adopting
functional encryption schemes, which assert that a particular mathematical property of
plaintexts is conserved after encryption, allowing its processing without decryption.

1.1 Fully homomorphic encryption

A well-known example of functional encryption schemes is homomorphic encryption. Orig-
inally proposed in 1978, such concept allows the evaluation of ciphertexts through addition
or multiplication operations without the possession of decryption keys and without leaking
information about the encrypted messages [30].

Schemes that support either addition or multiplication are called partially homomor-
phic, and have been known for decades, such as the Paillier and Elgamal proposals [28, 18].
Only in 2009 a construction that provides support to an unlimited number of both op-
erations was proposed by Gentry [21]. His work depends on first building a somewhat
homomorphic encryption scheme, which supports a limited amount of consecutive oper-
ations. This construction requires the handling of the noise of a ciphertext, an element
sampled from a carefully chosen probabilistic distribution. Homomorphic operations in-
creases it and, after a certain point, decryption is not able to recover the message. A
bootstrap procedure is used to reduce the noise level in a ciphertext, allowing further
computation. Gentry’s work motivated several following further works that pursued im-
provements on security levels and performance, and standardization [21]. Such schemes
are classified as fully homomomorphic.

BFV, CKKS, and TFHE are modern fully homomorphic encryption (FHE) lattice-
based schemes with unique properties. BFV is a variant of Brakerski’s proposal that

1Translated from Portuguese “Lei Geral de Proteção de Dados Pessoais”.
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relies on the hardness of the Ring-Learning with Errors (RLWE). It’s plaintext domain
is defined over a ring of polynomials with coefficients in a integer finite field. CKKS en-
ables computation on encrypted complex numbers and can be used for privacy-preserving
machine learning applications [12]. It is also based on the RLWE but is considered an ap-
proximate FHE scheme, since it is only able to decrypt an approximation of the protected
message. TFHE is an FHE scheme that operates on the torus mathematical space, which
makes it suitable for Boolean operations [13]. It is based on the problem of Learning
with errors (LWE) and it offers the faster bootstrap procedure among the current FHE
proposals. TFHE is particularly useful for privacy-preserving machine learning and data
analysis applications.

In summary, BFV can perform integer, CKKS enables computations on encrypted
complex numbers, and TFHE is well-suited for Boolean operations. Each one has its own
unique properties and the choice of the scheme depends on the specific requirements of
the application.

1.2 CUDA and FHE

CUDA (Compute Unified Device Architecture) is a parallel computing architect devel-
oped by NVIDIA that allows developers to accelerate computationally intensive tasks on
NVIDIA GPUs. In particular, tasks with high data parallelism can benefit from CUDA,
as polynomial arithmetic and large vector operators, as used in current FHE schemes.

CUDA’s processing paradigm considers the existence of a host, which is basically the
CPU and the machine’s main memory, from the device, so-called GPU. Thus, before
each execution on the GPU data must be copied from the main memory to the GPU
global memory, and the computation outcome must be copied back. This communication
constraint imposes high latency and implies that any computation capable of taking ad-
vantage of the GPU computing power needs to rely on high throughput, absorbing the
slowdown caused by memory copies.

Many works in the literature investigate implementation techniques of FHE schemes [22,
1, 35, 16], and show performance improvements by accelerating the scheme arithmetic or
the scheme operations on GPUs.

1.3 Purpose and scope

This work discusses different perspectives of the development of privacy-preserving tech-
niques. We consider a wide range of cases: from the low-level implementation of schemes,
as the design of polynomial arithmetic required by current homomorphic encryption
schemes; to the design of a network of devices running complex algorithms over cipher-
texts. The scope of the thesis is the development of existing privacy-preserving techniques
to improve security or performance.
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1.4 Contributions

In this Section, I summarize in a non-chronological order the studied problems and results
obtained during the execution of this PhD. These contributions are related to research
publications in conferences and journals, and as software made available publicly to the
scientific community.

1.4.1 Efficient implementation of RLWE-based HE cryptosystems
on GPUs

My master’s research investigated methods for the efficient implementation of YASHE [11],
a promising LHE cryptosystem, on GPUs [3]. YASHE relies both on the Ring Learning
with Errors (RLWE) and the Decisional Small Polynomial Ratio (DSPR) problem as
its underlying mathematical problem, which provided a fast homomorphic multiplication
when compared to other HE schemes. In that work, we conclude that the Fast Fourier
Transform (FFT) and the Chinese Remainder Theorem (CRT) are useful tools on the
implementation of polynomial arithmetic with large coefficients on GPUs, but also that
the precision issues caused by the floating-point arithmetic of the FFT could increase
significantly the ciphertext’s noise and affect computation accuracy. After Albrecht et al.
work proposed an efficient attack against schemes based on the DSPR, as YASHE, the
viability of these schemes as secure constructions for HE was invalidated [2]. Thus, it was
natural to port those results to other schemes during my PhD.

A considerable amount of time was applied discussing the challenges of developing
an efficient CUDA implementation of HE schemes, such as BFV and CKKS [19, 12].
In recent years, this became an important topic and several libraries were developed
and made available, such as SEAL [17], cuHE [15], Lattigo [32], and Concrete [14]. Some
common points of discussions consider techniques to accelerate polynomial multiplication,
such as the applicability of DFT 2-variants such as the FFT and the Number-theoretic
Transform (NTT).

As results obtained related to this branch, we mention the following works:

• P. G. M. R. Alves; J. N. Ortiz; D. F. Aranha. Faster homomorphic encryption
over GPGPUs via hierarchical DGT. In: International Conference on Financial
Cryptography and Data Security. Springer, Berlin, Heidelberg, 2021. p. 520-540.

• P. G. M. R. Alves; J. N. Ortiz; D. F. Aranha. Performance of Hierarchical Trans-
forms in Homomorphic Encryption: A case study on Logistic Regression inference.
Submitted to the Journal of Cryptographic Engineering.

The first paper extends the techniques proposed in my master’s to BFV; adjusts the
state machine to more efficiently explore the GPU capability, especially regarding memory
locality efficiency; and explores new directions, such as the replacement of NTT, widely
used in the literature, by the Discrete Gaussian Transform (DGT) as the arithmetic
engine to accelerate polynomial multiplication. Some authors argue that it could perform

2Acronym of Discrete Fourier Transform.
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better on the GPU than the NTT since it implies a higher arithmetic density [9]. That
work offered benchmarks comparing our implementation of the BFV using the DGT with
the state of the art, and it was clear that those combined techniques effectively offered
a performance improvement, but we couldn’t isolate the contribution of the transform
itself. Moreover, we couldn’t say how relevant is the contribution of NTT or DGT to
the performance of the implementation, assuming that some benefit can be observed.
Hence, in the second paper, we developed two mirror libraries that implement CKKS, a
cryptosystem similar to BFV, one using the DGT and the other running the NTT. We ran
several experiments, measuring and comparing the latency on both in different scenarios,
from the basic direct comparison to higher-level contexts that assist the understanding of
the impact these transforms cause on the application. In particular, we study the case of
logistic regression inference, an important machine learning algorithm that can be used
to classify data. We conclude that considerable differences can be observed in each case.
This line of research was completely novel and relevant to solve open questions in the
literature.

These papers aim for low-level contributions that reduce the overhead related to mod-
ern HE schemes on the execution happening on fog nodes. Combined, they show that
CUDA is a vital architecture for the low-latency implementation of these schemes as long
as the developer finds ways to reinforce memory locality and use efficiently the fast mem-
ories available on the GPUs. Lastly, they present a deep comparison of the most efficient
methods available to accelerate polynomial multiplication. Such discussion is scarce in the
literature, and often developers simply pick a solution without understanding its aptitude
to the target hardware.

1.4.2 Protocols for privacy-preserving computation

A different branch of my work involves the proposal of high-level protocols to accommo-
date privacy-preserving techniques to real-world applications.

One of our approaches in that branch was the construction and management of en-
crypted databases. First, we investigate open problems, such as how one could efficiently
find records without having the decryption key. We propose a relational algebra to build
a framework that addresses this and other relevant issues described in the related works.

The original version of this work was published at the XVI Brazilian Symposium on
Information and System Security (SBSeg 2016), when it received an honorable mention
award. As consequence, we were invited by the Journal of Internet Services and Applica-
tions (JISA) to extend it on a special issue.

In the extended version, we explore the Netflix Grand Prize contest as a use case. It
was a famous event in which researchers and developers tried for three consecutive years
to propose new methods to learn from previous interactions of users with the Netflix
catalog and become more efficient to predict if a particular content would be likable or
not by that user. In our work, we pick the winner solution of the contest and implement
the primitives needed for its execution on a real database using our relational algebra.

That problem involves the computation of complex functions locally and management
of an encrypted database. A different direction is to consider the effect of a privacy-
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oriented solution that requires network communication, as an electricity smart-meter grid
capable of processing encrypted user data without breaking the data secrecy. In a recent
research we explore the case of such a network composed by a user, producing data; a
centralized control center that may have limited access to decrypted data but does not
have computational power to support the entire network needs; and several fog nodes
capable of splitting the computation but not being trustworthy to handle plaintexts.
The fog nodes would need to compute parts of a complex function, such as a machine
learning algorithm, capable of, for instance, consumption forecasting, without access to
decryption keys. FHE is a natural solution but its impact on the network performance
might be high considering the ciphertext expansion factor, which might be of thousands,
and computational complexity. Thus, our work explores the network overhead of handling
large operators as FHE ciphertexts.

• P. G. M. R. Alves; D. F. Aranha. A framework for searching encrypted databases.
In: Proceedings of the XVI Brazilian Symposium on Information and Computational
Systems Security. Niterói: SBC: 2016.

• P. G. M. R. Alves; D. F. Aranha. A framework for searching encrypted databases.
Journal of Internet Services and Applications, v. 9, n. 1, p. 1-18, 2018.

• S. A. Marandi; P. G. M. R. Alves; D. F. Aranha; R. H. Jacobsen. Lattice-based
Homomorphic Encryption for Privacy-Preserving Smart Meter Data Analytics. Sub-
mitted to the IEEE Transactions on Dependable and Secure Computing.

1.4.3 Software development

Several computational libraries and relevant code repositories were produced and made
publicly available during this work development. In particular, we mention:

• A proof-of-concept MongoDB wrapper which provides encrypted functionality to
the database. Relates to [4, 5]:

– Alves P. A proof-of-concept searchable encryption backend for MongoDB. 2016.
https://github.com/pdroalves/encrypted-mongodb.

• A CUDA-based library that implements the basic polynomial arithmetic needed for
the implementation of RLWE schemes, as BFV and CKKS, and a implementation
of the BFV over it. Relate to [6].

– Alves P. https://github.com/pdroalves/cupoly.

– Alves P. https://github.com/pdroalves/spog-bfv.

– Alves P. https://github.com/pdroalves/spog-ckks.

– Alves P. https://github.com/pdroalves/spogfaces.

– Alves P. https://github.com/pdroalves/spog-svm.

https://github.com/pdroalves/encrypted-mongodb
https://github.com/pdroalves/cupoly
https://github.com/pdroalves/spog-bfv
https://github.com/pdroalves/spog-ckks
https://github.com/pdroalves/spogfaces
https://github.com/pdroalves/spog-svm
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• Two mirror implementations of the CKKS on CUDA, differing only on the underly-
ing solution to accelerate polynomial multiplication, one uses the NTT as commonly
found in the literature, while the other uses the DGT. Relate to [7].

– Alves P. https://github.com/pdroalves/aoa.

– Alves P. https://github.com/pdroalves/aoa-logistic-regression

1.4.4 Visiting period at Aarhus University

Between September 2021 and September 2022, I visited the Aarhus University, where I
could work closely with the Aarhus Crypto Group. There, I continued the investigation on
accelerating GPU implementations of HE schemes, but also pursued new research lines.

Besides the direct benefits to my work, as publications and software development
mentioned at Section 1.4, my time in Aarhus also led the development of a research line
towards the practical use of RNS on the AVX512 architecture in accelerating modular
arithmetic involving large numbers applied on public-key cryptography. The prototypes
I wrote 3 were used as starting point for the grant-awarded project “RENAIS: Residue
Number Systems for Cryptography”, which targets discovering new algorithms and imple-
mentation techniques to accelerate modular arithmetic of cryptographic interest, with a
focus on developing formal verification for correctness and implementation security guar-
antees [8].

1.5 Organization of the document

This is a compilation thesis, in which the body of the document is a verbatim compilation
of published or submitted to publication articles. At Chapter 2 we present the works.
They are sorted by publishing date, in the case of those already published, or submission-
for-publishing date, otherwise, and Chapter 3 discusses the research line that characterizes
the collection of papers presented. Lastly, Chapter 4 concludes this thesis.TFHE is an
FHE scheme that operates on the torus mathematical space, which makes it suitable
for boolean operations [13]. It is based on the problem of Learning with errors (LWE)
and it offers the faster bootstrap procedure among the current FHE proposals. TFHE is
particularly useful for privacy-preserving machine learning and data analysis applications.

3Source code available at https://github.com/pdroalves/rnsmr_avx512.

https://github.com/pdroalves/aoa
https://github.com/pdroalves/aoa-logistic-regression
https://github.com/pdroalves/rnsmr_avx512
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Chapter 2

Published works

2.1 Searchable encryption

This publication is entitled “A framework for searching encrypted databases” and was
published originally at the XVI Brazilian Symposium on Information and Computational
Systems Security in 2016, where received the honorable mention award [4]; and latter as
an extended version at the Journal of Internet Services and Applications in 2018 [5]. This
thesis presents the second and most complete version of the work.



A framework for searching encrypted databases
Pedro G. M. R. Alves Diego F. Aranha

University of Campinas

January 2018

Abstract

Cloud computing is a ubiquitous paradigm responsible for a fundamental change
in the way distributed computing is performed. The possibility to outsource the
installation, maintenance and scalability of servers, added to competitive prices,
makes this platform highly attractive to the computing industry. Despite this,
privacy guarantees are still insufficient for data processed in the cloud, since the
data owner has no real control over the processing hardware. This work proposes
a framework for database encryption that preserves data secrecy on an untrusted
environment and retains searching and updating capabilities. It employs order-
revealing encryption to perform selection with time complexity in Θ(log n), and
homomorphic encryption to enable computation over ciphertexts. When compared
to the current state of the art, our approach provides higher security and flexibil-
ity. A proof-of-concept implementation on top of the MongoDB system is offered
and applied in the implementation of some of the main predicates required by the
winning solution to Netflix Grand Prize.

Keywords— cryptography, functional encryption, homomorphic encryption, order reveal-
ing encryption searchable encryption, databases

1 Introduction
The massive adoption of cloud computing is responsible for a fundamental change in the way dis-
tributed computing is performed. The possibility to outsource the installation, maintenance and
scalability of servers, added to competitive prices, makes this service highly attractive [13, 60].
From mobile to scientific computing, the industry increasingly embraces cloud services and
takes advantage of their potential to improve availability and reduce operational costs [29, 19].
However, the cloud cannot be blindly trusted. Malicious parties may acquire full access to
the servers and consequently to data. Among the threats there are external entities exploiting
vulnerabilities, intrusive governments requesting information, competitors seeking unfair advan-
tages, and even possibly malicious system administrators. The data owner has no real control
over the processing hardware and therefore cannot guarantee the secrecy of data [64]. The risk
of confidentiality breaches caused by inadequate and insecure use of cloud computing is real and
tangible.

This is the extended version of a paper by the same name that appeared in XVI Brazilian Symposium
on Information and Computational Systems Security in November, 2016.
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The importance of privacy preservation is frequently underestimated, as well as the dam-
age its failure represents to society, as the unfolding of a privacy breach may be completely
unpredictable. A report from Javelin Advisory Services found a distressing correlation between
individuals who were victims of data breaches and later victims of financial fraud. About 75%
of total fraud losses in 2016 had this characteristic, corresponding to U$ 12 billion [44]. This
could be avoided with the use of strong encryption at the user side, never revealing data even
to the application or the cloud.

The problem of using standard encryption in an entire database is that it eliminates the
capability of selecting records or evaluating arbitrary functions without the cryptographic keys,
reducing the cloud to a complex and huge storage service. For this reason, alternatives have been
proposed to solve this problem, starting from anonymization and heuristic operational measures
which do not provide formal privacy guarantees. Encryption schemes tailored for databases
such as searchable encryption are a promising solution with perhaps more clear benefits [47, 46,
1, 58]. Searchable encryption enables the cloud to manipulate encrypted data on behalf of a
client without learning information. Hence, it solves both of aforementioned problems, keeping
confidentiality in regard to the cloud but retaining some of its interesting features.

1.1 The frustration of data anonymization
In 2006, Netflix shared their interest in improving the recommendation system offered to their
users with the academic community. This synergy was directed to an open competition during
3 rounds which offered financial prizes for the best recommendation algorithms. An important
feature of Netflix’s commercial model is to efficiently and assertively guide subscribers in finding
content compatible to their interests. Doing this correctly may reinforce the importance of
the product for leisure activities, consolidate Netflix’s commercial position, and ensure clients’
loyalty [7].

The participants of the contest received a training set with anonymized movie ratings col-
lected from Netflix subscribers between 1999 and 2005. There are approximately half million
customers and about 17 thousands movies classified in the set, totalling over 100 million ratings.
This dataset is composed by movie titles, the timestamp when the rating was created, the rating
itself, and an identification number for relating same-user records. No other information about
customers was shared, such as name, address or gender. The objective of the participants was to
predict with good accuracy how much someone would enjoy a movie based on their previously
observed behavior in the platform.

In the same year, America Online (AOL) took a similar approach and released millions
of search queries made by 658,000 of its users with the goal of contributing to the scientific
community by enabling statistical work over real data [35]. As Netflix, AOL applied efforts on
anonymizing the data before publishing. All the obviously sensitive data, such as usernames
and IP addresses, were suppressed, being replaced by unique identification numbers.

The ability to understand user’s interests and predict their behavior based on collected data
is desirable in several commercial models and consequently a hot topic in the scientific litera-
ture [50, 61, 45]. However, the importance of privacy-preserving practices is still underestimated,
a challenge to overcome. For instance, despite the anonymization efforts of Netflix, Narayanan
and Shmatikov brilliantly demonstrated how to break anonymity of the Netflix’s dataset by
cross-referencing information with public knowledge bases, as those provided by the Internet
Movie Database (IMDB) [37]. Using a similar approach, New York Times’ reporters were capa-
ble of relating a subset of queries to a particular person by joining apparently innocent queries
to non-anonymous real state public databases [4].
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1.2 “Unexpected” leaks
These events raised a still unsolved discussion about how to safely collect and use data without
undermining user privacy. As remarked by Narayanan and Felten, “data privacy is a hard
problem” [36]. Even when data holders choose the most conservative practice and never share
data, system breaches may happen.

In 2013, a large-scale surveillance program of the USA government was revealed by Edward
Snowden, a former NSA employee. Named PRISM, it was structured as a massive data intercep-
tion effort to collect information for posterior analysis. Their techniques arguably had support
of the US legal system and were frequently applicable even without knowledge of the data-owner
companies [25, 62].

Two years later, in 2015, stolen personal data of millions of users of the website Ashley Madi-
son was leaked by malicious parties exploiting security vulnerabilities [57]. As consequence, sev-
eral reports of extortion and even a suicide, illustrating how increasingly sensitive data breaches
are becoming.

In the same year, the Sweden’s Transport Agency decided to outsource its IT operations to
IBM. To fulfill the contract, the latter chose sites in Eastern Europe to place these operations.
This resulted in Swedish confidential data being stored in foreign data centers, in particular
Czech Republic, Serbia and Romania. As expected, this decision led to a massive data leak,
containing information about all vehicles throughout Sweden, including police and military
vehicles. Thus, names, photos and home addresses of millions of Swedish citizens, military
personal, people under the witness relocation program, were exposed [41].

In 2016, Yahoo confirmed that a massive data breach, possibly the largest known, affected
about 500 million accounts and revealed to the world a dataset full of names, addresses, and
telephone numbers [5].

These occurrences take us to the disturbing feeling that, despise all efforts, the risk of data
deanonymization increases in worrying ways following how much of it is made available [56, 24].
Hence, a seemingly obvious strategy to avoid such issue is to simply stop any kind of dataset
collection.

1.3 Privacy by renouncing knowledge
History has proven that the task of collecting and storing data from third parties should be
treated as risky. The chance of compromising user privacy by accident is too big and possibly
with extreme consequences. This way, the concept of security by renouncing knowledge has
attracted adepts, as the search engine DuckDuckGo that states in a blog post that “the only
truly anonymised data is no data”, and because of that claims to forego the right to store their
users’ data [21, 51].

A more financial-realistic approach for dealing with this issue is not to give up completely
of knowledge but reduce the entities with access by keeping it encrypted during all its lifespan:
transportation, storage, and processing, staying secret to the application and the cloud. Thus,
a new security fence is set, tying data secrecy to formal guarantees.

1.4 Our contributions
This work follows the state of the art and proposes directives to the modeling of a searchable
encrypted database [11]. We detect the main primitives of a relational algebra necessary to keep
the database functional, while adding enhanced privacy-preserving properties. A set of crypto-
graphic tools is used to construct each of these primitives. It is composed by order-revealing
encryption to enable data selection, homomorphic encryption for evaluation of arbitrary func-
tions, and a standard symmetric scheme to protect and add flexibility to the handling of general
data. In particular, our proposed selection primitive achieves time complexity of Θ(log n) on the
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dataset size. Moreover, we provide a security analysis and performance evaluation to estimate
the impact on execution time and space consumption, and a conceptual implementation that
validates the framework. It works on top of MongoDB, a popular document-based database,
and is implemented as a wrapper over its Python driver. The source code was made available
to the community under a GNU GPLv3 license [2].

When compared to CryptDB [47], our proposal provides stronger security since it is able to
keep confidentiality even in the case of a compromise of the database and application servers.
Since CryptDB delegates to the application server the capability to derive users’ cryptographic
keys, it is not able to provide such security guarantees. Furthermore, our work is database-
agnostic, it is not limited to SQL but can be applied on different key-value databases.

This work is structured as follows. Section 2 describes the cryptographic building blocks re-
quired for building our proposed solution. Sections 3 and 4 define searchable encryption, discuss
related threats, and present existing implementations. Section 5 proposes our framework, while
Section 6 discusses its suitability in a recommendation system for Netflix. Our experimental
validation results are presented in Section 7 and Section 8 concludes the paper.

2 Building blocks
The two main classes of cryptosystems are known as symmetric and asymmetric (or public-key)
and defined by how users exchange cryptographic keys. Symmetric schemes use the same secret
key for encryption and decryption, or equivalently can efficiently compute one from the other,
while asymmetric schemes generate a pair of keys composed by public and private keys. The
former is distributed openly and is the sole information needed to encrypt a message to the key
owner, while the latter should be kept secret and used for decryption.

Besides this, cryptosystems that produce always the same ciphertext for the same message-
key input pair are known as deterministic. The opposite, when randomness is used during
encryption, are known as probabilistic. We next recall basic security notions and special prop-
erties that make a cryptosystem suitable to a certain application. Later, we shall make use of
these concepts to analyze the security of our proposal.

2.1 Security notions
Ciphertext indistinguishability is a useful property to analyze the security of a cryptosystem.
Two scenarios are considered, when an adversary has and does not have access to an oracle
that provides decryption capabilities. Usually these are evaluated through a game in which an
adversary tries to acquire information from ciphertexts generated by a challenger [6].

Indistinguishability under chosen plaintext attack – IND-CPA. In the IND-CPA
game the challenger generates a pair (PK,SK) of cryptographic keys, makes PK public and
keeps SK secret. An adversary has as objective to recognize a ciphertext created from a ran-
domly chosen message from a known two-element message set. A polynomially bounded number
of operations is allowed, including encryption (but not decryption), over PK and the cipher-
texts. A cryptosystem is indistinguishable under chosen plaintext attack if no adversary is able
to achieve the objective with non-negligible probability.

Indistinguishability under chosen ciphertext attack and adaptive chosen ci-
phertext attack – IND-CCA1 and IND-CCA2. This type of indistinguishability
differs from IND-CPA due to the adversary having access to a decryption oracle. In this game
the challenge is again to recognize a ciphertext as described before, but now the adversary is
able to use decryption results. This new game has two versions, non-adaptive and adaptive.
In the non-adaptive version, IND-CCA1, the adversary may use the decryption oracle until it
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receives the challenge ciphertext. On the other hand, in the adaptive version he is allowed to
use the decryption oracle even after that event. For obvious reasons, the adversary cannot send
the challenge ciphertext to the decryption oracle. A cryptosystem is indistinguishable under
chosen ciphertext attack/adaptive chosen ciphertext attack if no adversary is able to achieve the
objective with non-negligible probability.

Indistinguishability under chosen keyword attack and adaptative chosen key-
word attack – IND-CKA and IND-CKA2. This security notion is specific to the
context of keyword-based searchable encryption [17]. It considers a scenario in which a chal-
lenger builds an index with keyword sets from some documents. This index enables someone
to use a value Tw, called trapdoor, to verify if a document contains the word w. This game
imposes that no information should be leaked from the remotely stored files or index beyond
the outcome and the search pattern of the queries. The adversary has access to an oracle that
provides the related trapdoor for any word. His objective is to use this oracle as training to apply
the acquired knowledge and break the secrecy of unknown encrypted keywords. As well as in
the IND-CCA1/IND-CCA2 game, the non-adaptative version, IND-CKA, of this game forbids
the adversary to use the trapdoor oracle once the challenge trapdoor is sent by the challenger.
On the other hand, the adaptative version allows the use of the trapdoor oracle even after this
event.

A cryptosystem is indistinguishable under chosen keyword attack if every adversary has only
a negligible advantage over random guessing.

Indistinguishability under an ordered chosen plaintext attack – IND-OCPA.
Introduced by Boldyreva et al., this notion supposes that an adversary is capable of retrieving
two sequences of ciphertexts resulting of the encryption of any two sequences of messages [8].
Furthermore, he knows that both sequences have identical ordering. The objective of this ad-
versary is to distinguish between these ciphertexts. A cryptosystem is indistinguishable under
an ordered chosen plaintext attack if no adversary is able to achieve the objective with non-
negligible probability.

2.2 Functional encryption
Cryptographic schemes deemed “functional” receive such name because they support one or more
operations over the produced ciphertexts, hence becoming useful not only for secure storage.

Order-revealing encryption (ORE) Order-revealing encryption schemes are character-
ized by having, in addition to the usual set of cryptographic functions like keygen and encrypt,
a function capable of comparing ciphertexts and returning the order of the original plaintexts,
as shown by Definition 1.

Definition 1 (ORE). Let E be an encryption function, C be a comparison function, and m1 and
m2 be plaintexts from the message space. The pair (E,C) is defined as an encryption scheme
with the order-revealing property if:

C(E (m1) , E (m2)) =





lower, if m1 < m2,

equal, if m1 = m2,

greater, otherwise.

This is a generalization of order-preserving encryption (OPE), that fixes C to a simple
numerical comparison [10].
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Security As argued by Lewi and Wu, the “best-possible” notion of security for ORE is
IND-OCPA, which means that it is possible to achieve indistinguishability of ciphertexts and
with a much stronger security guarantee than OPE schemes can have [32]. Furthermore, differ-
ently from OPE, ORE is not inherently deterministic [31]. For example, Chenette et al. propose
an ORE scheme that applies a pseudo-random function over an OPE scheme, while Lewi and
Wu propose an ORE scheme completely built upon symmetric primitives, capable of limiting the
use of the comparison function and reducing the leakage inherent to this routine [14, 32]. Their
solution works by defining ciphertexts composed by pairs (ctL, ctR). To compare ciphertexts ctA
and ctB, it requires ctAL

and ctBR
. This way, the data owner is capable of storing only one side

of those pairs in a remote database being certain that no one will be able to make comparisons
between those elements. Nevertheless, any scheme that reveals numerical order of plaintexts
through ciphertexts is vulnerable to inference attacks and frequency analysis, as those described
by Naveed et al. over relational databases encrypted using deterministic and OPE schemes [38].
Although ORE does not completely discard the possibility of such attacks, it offers stronger
defenses.

Homomorphic encryption (HE) Homomorphic encryption schemes have the property
of conserving some plaintext structure during the encryption process, allowing the evaluation
of certain functions over ciphertexts and obtaining, after decryption, a result equivalent to the
same computation applied over plaintexts. Definition 2 presents this property in a more formal
way.

Definition 2 (HE). Let E and D be a pair of encryption and decryption functions, and m1 and
m2 be plaintexts. The pair (E,D) forms an encryption scheme with the homomorphic property
for some operator � if and only if the following holds:

E (m1) ◦ E (m2) ≡ E (m1 �m2) .

The operation ◦ in the ciphertext domain is equivalent to � in the plaintext domain.

Homomorphic cryptosystems are classified according to the supported operations and their
limitations. Partially homomorphic encryption schemes (PHE) hold on Definition 2 for either
addition or multiplication operations, while fully homomorphic encryption schemes (FHE) sup-
port both addition and multiplication operations.

PHE cryptosystems have been known for decades [42, 22]. However, the most common data
processing applications, as those arising from statistics, machine learning or genomics processing,
frequently require support for both addition and multiplication operations simultaneously. This
way, such schemes are not suitable for general computation.

Nowadays, FHE performance is prohibitive, so weaker variants, such as SHE 1 and LHE 2,
have the stage for solving computational problems of moderate complexity [23, 12].

Security In terms of security, homomorphic encryption schemes achieve at most IND-CCA1,
which means that the scheme is not secure against an attacker with arbitrary access to a decryp-
tion oracle [6]. This is a natural consequence of the design requirements, since these cryptosys-
tems allow any entity to manipulate ciphertexts. Most of current proposals, however, reach at
most IND-CPA and stay secure against attackers without access to a decryption oracle [34].

1SHE stands for “Somewhat homomorphic encryption”.
2LHE stands for “Leveled fully homomorphic encryption”.
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3 Searchable encryption
We now formally define the problem of searching over encrypted data. We present three state-
of-the-art implementations of solutions to this problem, namely the CryptDB, Arx, and Seabed
database systems.

3.1 The problem
Suppose a scenario where Alice keeps a set of documents in untrusted storage maintained by
an also untrusted entity Bob. She would like to keep this data encrypted because, as defined,
Bob cannot be trusted. Alice also would like to occasionally retrieve a subset of documents
accordingly to a predicate without revealing any sensitive information to Bob. Thus, sharing
the decryption key is not an option. The problem lies in the fact that communication between
Alice and Bob may (and probably will) be constrained. Hence, a naive solution consisting of
Bob sending all documents to Alice and letting her decrypt and select whatever she wants may
not be feasible. Alice must then implement some mechanism to protect her encrypted data so
that Bob will be able to identify the desired documents without knowing their contents or the
selection criteria [54].

An approach that Alice can take is to create an encrypted index as in Definition 3.

Definition 3 (Encrypted indexing). Suppose a dataset DB = (m1, . . . ,mn) and a list W =
(W1, . . . ,Wn) of sets of keywords such that Wi contains keywords for mi. The following
routines are required to build and search on an encrypted index:

BuildIndexK(DB,W): The list W is encrypted using a searchable scheme under a key K
and results in a searchable encrypted index I. This process may not be reversible (e.g.,
if a hash function is used). The routine outputs I.

TrapdoorK(F): This function receives a predicate F and outputs a trapdoor T . The latter
is defined as the information needed to search I and find records that satisfy F .

SearchI(T ): It iterates through I applying the trapdoor T and outputs every record that
returns True for the input trapdoor.

This way, if the searchable cryptosystem used is IND-CKA then Alice is able to keep her
data with Bob and remain capable of selecting subsets of it without revealing information [11].

3.2 Threat modeling
The development of efficient and secure solutions for management of datasets depends on the
awareness of the threats we intent to mitigate. For such, this work follows Grubbs’ definitions
of adversaries for a database [28].

Active attacker. The worst case scenario is when the attacker acquires full control over the
server, being capable of performing arbitrary operations. Thus, he is not committed to follow
any protocol.

Snapshot attacker. The adversary obtains a snapshot of the dataset containing the primary
data and indexes but no information about issued queries and how they access the encrypted
data.
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Persistent passive attacker. Another possibility is a scenario in which the attack cannot
interfere with the server functionality but can observe all of its operations. We do not consider
only attackers that inspect issued queries in real-time, but also those that are able to recover
them later. As demonstrated by Grubbs, the data contained in a real-world database goes far
beyond the primary dataset (names, addresses, . . . ). It also includes logs, caches, and auxiliary
tables (as MySQL’s diagnostic tables) used, for instance, to guarantee ACID 3 and enable
the server to undo incomplete queries after a power-break. It is very likely that an attacker
competent to subjugate the security protocols of the system will be capable to also recover these
secondary datasets.

The idea of a snapshot attacker is very popular among solutions and researchers intended to
develop encrypted databases. Nevertheless, it underestimates the attacker and the many side-
attacks a motivated adversary can execute. As Rogaway remarks, we cannot make the mistake
to reduce the adversary to the lazy and abstract Bob, but we must remember that it can go far
beyond that and take the form of a military-industrial-surveillance program with a billionaire
budget and capability to surpass the obvious [49].

4 Related work
The management of a dataset is made by a database management system (DBMS). It is com-
posed by several layers responsible for coordinating read and write operations, guarantee data
consistency and integrity, and user access. The engineering of such a system is a complex task
and requires smart optimizations to be able to store data, process queries and return the outcome
with minimum latency and good scalability.

This way, searchable encryption solutions usually are implemented not inside but on top of
these systems as a middleware to translate encrypted queries to the DBMS without revealing
plaintext data and decrypt the outcome, as shown in Figure 1. This strategy enables the use of
decades of optimizations incorporated in nowadays DBMSs and portable to encrypted data. It
is important to state that, ideally, security features should be designed in conjunction with the
underlying database. Long-term solutions are expected to assimilate those strategies internally
in the DBMS core.

4.1 CryptDB
CryptDB is a software layer that provides capabilities to store data in a remote SQL database
and query over it without revealing sensitive information to the DBMS. It introduces a proxy
layer responsible to encrypt and adjust queries to the database and decrypt the outcome [47].

The context in which CryptDB stands is a typical structure of database-backed applications,
consisting of a DBMS server and a separate application server. To query a database, a predicate
is generated by the application and processed by the proxy before it is sent to the DBMS server.
The user interacts exclusively with the application server and is responsible for keeping his
password secret. This is provided on login to the proxy (via application) that derives all the
cryptographic keys required to interact with the database. When the user logs out, it is expected
that the proxy deletes its keys.

Data encryption is done through the concept of “onions”, which consist of layers of encryption
that are combined to provide different functionalities, as shown in Figure 2. Such layers are
revealed as necessary to process the queries being performed. Modeling a database involves
evaluating the meaning of each attribute and predicting the operations it must support. In

3Relative to a set of desirable properties for a database. Acronym to “Atomicity, Consistency, Isolation,
Durability”.
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Figure 1: Sequence diagram representing the process of generating and processing an
encrypted query. The proxy is positioned between the user and the DBMS in a trusted
environment. Its responsibility is to receive a plaintext query, apply an encryption pro-
tocol, submit the encrypted query to the DBMS, and decrypt the outcome.

particular, keyword-searching as described in Definition 3 is implemented as proposed in Song’s
work [54]. The performance overhead over MySQL measured by the authors is up to 30%.

Figure 2: Representation of the data format used by CryptDB. The current value to be
protected lies in the center, and a new encryption layer is overlapped to it according to
the need of a particular functionality.

Two types of threats are treated in CryptDB: curious database administrators who try
to snoop and acquire information about client’s data but respect the established protocols (a
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persistent passive attacker); and an adversary that gains complete control of application and
DBMS servers (an active attacker). The authors state that the first threat is mitigated through
the encryption of stored data and the ability to query it without any decryption or knowledge
about its content; while the second applies only to logged-in clients. In the considered scenario,
the cryptographic keys relative to data in the database are handled by the application server.
Thus, if the application server is compromised, all the keys it possesses at that moment (that
are expected to be only from logged-in users) are leaked to the attacker. Such arguments
were revisited after works by Naveed and Grubbs et al. demonstrated how to explore several
weaknesses of the construction, such as the application of OPE [39, 27].

4.2 Arx
Arx is a database system implemented on top of MongoDB [46]. It targets much stronger
security properties and claims to protect the database with the same level of regular AES-
based encryption4, achieving IND-CPA security. This is a direct consequence of the almost
exclusively use of AES to construct selection operators, even on range queries, and not only
brings strong security but also good performance due to efficiency of symmetric primitives,
sometimes even benefiting from hardware implementations. The authors report a performance
overhead of approximately 10% when used to replace the database of ShareLatex. The building
blocks used for searching follow those described in Definition 3. Furthermore, they apply a
different AES key for each keyword when generating the trapdoor, requiring the client to store
counters, as explained in the next paragraph.

At its core, Arx introduces two database indexes, Arx-Range for range and order-by-limit
queries and Arx-EQ for equality queries, both built on top of AES and using chained garbled
circuits. The former uses an obfuscation strategy to protect data, while enabling searches in
logarithmic time. The latter embeds a counter into each repeating value. This ensures that
the encryption of both are different, protecting them against frequency analysis. Using a token
provided by the client, the database is able to expand it in many search tokens and return all
the occurrences desired, allowing an index to be built over encrypted data.

The context in which Arx stands is similar to CryptDB. However, the authors consider the
data owner as the application itself. This way, it simplifies the security measures and considers
the responsibility to keep the application server secure outside of its scope.

4.3 Seabed
Seabed was developed by Papadimitriou et al. and aims at Business Intelligence (BI) appli-
cations interested in keeping data secure on the cloud [43]. As well as CryptDB and Arx,
Seabed was built consisting of a client-side query translator (to SQL), a query planner, and a
proxy that connects to a Apache Spark instance [53]. Its main foundations are two new cryp-
tographic constructions, additively symmetric homomorphic encryption (ASHE) and Splayed
ASHE (SPLASHE). The former is used to replace Paillier as the additively homomorphic en-
cryption scheme, stating that their construction is up to three orders of magnitude faster. The
latter is used to protect the database against inference attacks [38].

SPLASHE works by splitting sensitive data into multiple attributes, obscuring the low-
entropy of deterministic encryption. Formally, let C be a sensitive attribute of a dataset that
can be filled with d possible discrete values. The approach taken by SPLASHE is to replace this
attribute in the encrypted database by {C1,C2, · · · ,Cd} such that Cv = 1 and Ct = 0 for t 6= v
if C = v. When encrypted by ASHE the ciphertexts will look random to the adversary.

4The Advanced Encryption Standard (AES) is a well-established symmetric block cipher enabling
high performance implementation in hardware and software [18].
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Seabed’s authors argue that SPLASHE is strong enough to mitigate frequency analysis,
enabling the use of deterministic encryption whenever it is required in the database model.
However, Grubbs states that SPLASHE’s protection may be deflected through the auxiliary
data stored by the database [28]. Their work demonstrates how state-of-the-art databases store
metadata that can be used to reconstruct issued queries and, this way, recognize access patterns
on the attributes. Such patterns leak the information that SPLASHE intended to hide. Consid-
ering this, the only threat really mitigated by SPLASHE against the deterministic encryption
of Seabed is from a snapshot attacker.

5 Proposed framework
The goal of the proposed framework is to develop a database model capable of storing en-
crypted records and applying relational algebra primitives on it without the knowledge of any
cryptographic keys or the need for decryption. A trade-off between performance and security is
desirable, however we completely discard deterministic encryption whenever possible for security
reasons. The only exception are contexts with unique records, which avoid by definition weak-
nesses intrinsic to deterministic encryption. The applicability of this framework goes beyond
SQL databases. Besides the relational algebra hereby used to describe the framework, it can
be extended to key-value, document-oriented, full text and several other databases classes that
keep the same attribute structure.

The three main operations needed to build a useful database are insertion, selection and
update. Once data is loaded, being able to select only those pieces that correspond to an
arbitrary predicate is the basic block to construct more complex operations, such as grouping
and equality joins. This functionality is fundamental when there is a physical separation between
the database and the data owner, otherwise high demand for bandwidth is incurred to transmit
large fractions of the database records. Furthermore, real data is frequently mutable and thus
the database must support updates to remain useful.

We define as secure a system model that guarantees that the data owner is the only entity
capable of revealing data, which can be achieved by his exclusive possession of the cryptographic
keys. Thus, a fundamental aspect of our proposal is the scenario in which the database and the
application server handle data with minimum knowledge.

Lastly, the framework does not ensure integrity, freshness or completeness of results returned
to the application or the user, since an adversary that compromises the database in some way
can delete or alter records. We consider this threat to be outside the scope of this framework.

5.1 Classes of attributes
Records in an encrypted database are composed by attributes. These consist of a name and
a value, that can be an integer, float, string or even a binary blob. Values of attributes are
classified according to their purpose:

static An immutable value only used for storage. It is not expected to be evaluated with
any function, so there is no special requirement for its encryption.

index Used for building a single or multivalued searchable index. It should enable one
to verify if an arbitrary term is contained in a set without the need to acquire
knowledge of its content.

computable A mutable value. It supports the evaluation with arithmetic circuits and ensures
obtaining, after decryption, a result equivalent to the same circuit applied over
plaintexts.
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The implementation of each attribute must satisfy the requirements without leaking any
vital information beyond those related directly with the attribute objective (e.g.: order for index
attributes). Since the name of an attribute reveals information, it may need to be protected as
well. However, the acknowledgement of an attribute is done using its name, so even anonymous
attributes must be traceable in a query. An option for anonymizing the attribute name is to
treat it as an index.

The aforementioned cryptosystems are natural suggestions to be applied within these classes.
Since static is a class for storage only, which has no other requirements, any scheme with
appropriate security level and performance may be used, as AES. On the other hand, index
and computable attributes are immediate applications of ORE and HE schemes. Particularly,
the latter defines the HE scheme according to the required operations. Attributes that require
only one operation can be implemented with a PHE scheme, which provides good performance;
while those that require arbitrary additions and multiplications must use FHE and deal with
the performance issues.

Definition 4 (Secure ORE). Let E and C be, respectively, an encryption and a comparison
function. The pair (E,C) forms an encryption scheme with the order-revealing property
defined as “secure” if and only if it satisfies Definition 1; the encryption of a message m can
be written as E(m) = (cL, cR) = (EL(m), ER(m)), where EL and ER are complementary
encryption functions; and the comparison between two ciphertexts c1 and c2 is done by
C (cL1, cR2). This way, C may be applied without the complete knowledge of the ciphertexts.

In order to build a secure and efficient index, an ORE scheme that corresponds to Definition 4
should be used. We define the search framework as in Definition 5.

Definition 5 (Encrypted search framework). Let S be a set of words, sk a secret key, and
an ORE scheme (Enc, Cmp) that satisfies Definition 4. The operations required for an
encrypted search over S are defined as follows:

BuildIndexsk(S): Outputs the set

S∗ = {cR | (cL, cR) = Encsk(w),∀w ∈ S} .

Trapdoorsk(w): Outputs the trapdoor

Tw = (cL | (cL, cR) = Encsk(w)) .

SearchS∗, r(Tw): To select all records in S∗ with the relation r ∈ {lower, equal,
greater} to word w, one computes the trapdoor Tw and iterates through S∗ look-
ing for the records w∗ ∈ S∗ that satisfy

Cmp (Tw, w∗) = r.

The set Ŝ with all the elements in S∗ that satisfy this equation is returned.

5.2 Database operations
Let us consider a model composed by an encrypted dataset stored in a remote server and a user
that possesses the secret cryptographic keys. The latter would like to perform queries on data
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without revealing sensitive information to the server, as defined in Section 3.1.
In 1970, Codd proposed the use of a relational algebra as a model for SQL [16]. This consists

of a small set of operators that can be combined to execute complex queries over the data.
Through the functions defined in Definition 5, a relational algebra for encrypted database

operations can be built. The basic operators for such algebra are defined as follows.

1. Projection (πA): Returns a subset A of attributes from selected records. This subset
may be defined by attribute names that may or may not be encrypted.

(a) encrypted: If encrypted, a deterministic scheme is used or they are treated as index
values.
deterministic scheme: The user computes A∗ = {EncDet(a) | a ∈ A}. A∗ is sent
to the server, which picks the projected attributes using a standard algorithm.
index attributes: The user computes A∗ = {Trapdoorsk(a) | a ∈ A}. A∗ is sent
to the server, which picks the projected attributes using Search.

(b) unencrypted: Unencrypted selectors are sent to and selected by the server using a
standard algorithm.

2. Selection (σϕ): Given a predicate ϕ, returns only the records satisfying it.

• Handles exclusively index, hence ϕ must be equivalent to a combination of compar-
ative operators supported by Search.

• Let w �x← ϕ, where � is a compatible comparative operator, w an index attribute,
and x the operand to be compared (e.g.: σage>30 signals for records which the
attribute named “age” value is greater than 30). The trapdoor Tϕ = Trapdoorsk(ϕ)
is sent to the server that executes Search.

3. Cartesian product (×): The Cartesian product of two datasets is executed using a
standard algorithm.

4. Difference (−): The difference between two datasets A and B encrypted with the same
keys is defined as A−B = {x | x ∈ A and x 6∈ B}.

5. Union (∪): The union of two datasets A and B encrypted with the same keys is defined
as A ∪B = {x | x ∈ A or x ∈ B}.

Union and difference are defined over datasets with the same set of attributes. The opposite
is expected for Cartesian product, so that no attribute may be shared between operands.

Ramakrishnan calls these “basic operators” in the sense that they are essential and sufficient
to execute relational operations [48]. Additional useful operators can be built over those. For
instance: rename, join-like, and division. The same observation applies in the encrypted domain,
and complex operators can be constructed given basic operators defined over the encrypted
domain.

6. Rename (ρa,b): Renames attributes. Their names may or may not be encrypted.

(a) encrypted: Encryption shall be executed using a deterministic cryptosystem or
names treated as index values.

deterministic scheme: Let a be an attribute name to be replaced by b. The
user computes a∗ ← EncDet(a) and b∗ ← EncDet(b), and sends the output to the
server, which applies a standard replacement algorithm.

30



index attributes: Let a be an attribute name to be replaced by b. The user
computes a∗ ← Trapdoor(a) and b∗ ← cR | (cL, cR) = Encindex(b) and sends the
output to to the server, which selects attributes related to a∗ as equal through the
operation Search and renames the result to b∗.

(b) unencrypted: Unencrypted attribute names may be renamed by the server using a
standard algorithm.

7. Natural join (./): Let A and B be datasets with a common subset of attributes. The
natural join between A and B is defined as the selection of all elements that lies in A and B
and match all the values in those attributes. More formally, let c1, c2, . . . , cn be attributes
common to A and B; x1, x2, . . . , xn attributes not contained in A or in B; a1, a2, . . . , am
be attributes unique to A; b1, b2, . . . , bk be attributes unique to B; and K = N∗n+1. We
have that,

A ./ B ≡ σci=xi

(
ρ(ci,xi)(A)×B

)
, ∀i ∈ K.

8. Equi-join (./θ): Let A and B be datasets. The equi-join between A and B is defined as
the selection of all elements that lie in A and B and satisfy a condition θ. More formally,
A ./ B = σθ(A×B).

9. Division (/): Let A and B be datasets and C the subset of attributes unique to A. The
division operator joins the operands by common attributes but projects only those unique
to the dividend. Hence, A/B = πC (A ./ B).

Finally, it is important to define data insertion and update despite these cannot be properly
defined as relational operators.

• Insert: Encrypted data is provided and inserted into the database using a standard
algorithm.

• Update: An update operation is defined as a selection followed by the evaluation of a
computable attribute by a supported homomorphic operation.

This set of operators enables operating over an encrypted database without the knowledge
of cryptographic keys or acquiring sensitive information from user queries.

5.3 Security analysis
We assume the scenario in which the data owner has exclusive possession of cryptographic keys.
This way, insertions to the database must be locally encrypted before being sent to the server.
The database or the application never deal with plaintext data. Our framework thus has the
advantage over CryptDB of preserving privacy even in the outcome of a compromised database
or application server.

Despite being conceptually similar to OPE, ORE is able to address several of its security
limitations. ORE does not necessarily generate ciphertexts that reveal their order by design, but
allows someone to protect this information by only revealing it through specific functions. ORE
is able to achieve the IND-OCPA security notion and adds randomization to ciphertexts. Those
characteristics make it much safer against inference attacks [38]. The proposal of Lewi and Wu
goes even beyond that and is capable of limiting the use of the comparison function [32]. Their
scheme generates a ciphertext that can be decomposed into left and right components such that
a comparison between two ciphertexts requires only a left component of one ciphertext and the
right component of the other. This way, the authors argue that robustness against such attacks
is ensured since the database dump may only contain the right component, that is encrypted
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using semantically-secure encryption. Their scheme satisfies our notion of a Secure ORE and,
therefore, provides strong defenses against Snapshot attackers.

An eavesdropper (Active or Persistent passive attacker) is not capable of executing com-
parisons by himself in a Secure ORE. However he may learn the result of these and recognize
repeated queries by observing the outcome of a selection. This weakness may still be used for
inference attacks, that can breach confidentiality from related attributes. This issue can get
worse if the trapdoor is deterministic, when there is no other solution than implementing a key
refreshment algorithm. Besides that, the knowledge of the numerical order between every pair
of elements in a sequence may leak information depending on the application. This problem
manifests itself in our proposal on the σ primitive if it uses a weak index structure, like a naive
sequential index. A balanced-tree-based structure, on the other hand, obscures the numerical
order of elements in different branches. This way, an attacker is capable of recovering the order
of up to O(log n) database elements and infer about the others, in a database with n elements.

Schemes used with computable attributes are limited to IND-CCA1, and typically reach only
IND-CPA. Moreover, homomorphic ciphertexts are malleable by design. Thus, an attacker that
acquires knowledge about a ciphertext can use it to predictably manipulate others.

Finally, BuildIndex is not able to hide the quantity of records that share the same index.
This way, one is able to make inferences about those by the number of records. There is also
no built-in protection for the number of entries in the database. A workaround is to fix the size
of each static attribute value and round the quantity of records in the database using padding.
This approach increases secrecy but also the storage overhead.

5.4 Performance analysis
The application of ORE as the main approach to build a database index provides an extremely
important contribution to selection queries. Search does not require walking through all the
records testing a trapdoor, but only a logarithmic subset of it when implemented over an optimal
index structure, such as an AVL tree or B-tree based structure [52]. This characteristic is
highlighted on union, intersection and difference operations, which work by comparing and
selecting elements in different groups. Moreover, current proposals in the state of the art of
ORE enjoy good performance provided by symmetric primitives and does not require more
expensive approaches such as public-key cryptography [14, 32, 10]. In particular, although fully
homomorphic cryptosystems promise to fulfill this task and progress has been made with new
cryptographic constructions [20], it is still prohibitively expensive for real-world deployments [9].

Space consumption is also affected. Ciphertexts are computed as a combination of the
plaintext with random data. This way, a non-trivial expansion rate is expected. Differently
from speed overheads which are affected by a single attribute type, all attributes suffer with the
expansion rate of encryption.

5.5 Capabilities and limitations
Our framework is capable of providing an always-encrypted database that preserves secrecy
as long as the data owner keeps the cryptographic keys secure. One is able to select records
through index and apply arbitrary operations on attributes defined as computable. Furthermore,
it increases the security of data but maintaining the computational complexity of standard
relational primitives, achieving a fair trade-off between security and performance.

Although the framework has no constraints about attributes classified as both index and
computable, there is no known encryption scheme in the literature capable of satisfying all the
requirements. This way, the relational model of the database must be as precise as possible
when assigning attributes to each class, specially because the costs of a model refactor can be
prohibitive.
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Some scenarios appear to be more compatible with an encrypted database as described
than others. An e-mail service, for example, can be trivially adapted. The e-mails received
by a user are stored in encrypted form as static and some heuristic is applied on its content
to generate a set of keywords to be used on BuildIndex. This heuristic may use all unique
words in the e-mail, for example. The sender address may be an important value for querying
as well, so it may be stored as an index. To optimize common queries, a secondary collection of
records may be instantiated with, for example, counters. The quantity of e-mails received from
a particular sender, how often a term appears or how many messages are received in a time
frame. Storing this metadata information in a secondary data collection avoids some of the high
costs of searching in the main dataset.

However, our proposal fails when the user wants to search for something that was not
previously expected. For example, regular expressions. Suppose a query that searches for all
the sentences that start with “Attack” and end with “dawn”, or all the e-mails on the domain
“mail.com”. If these patterns were not foreseen when the keyword index was built, then no one
will be able to correctly execute this selection without the decryption of the entire database.
Since the format of the strings is lost on encryption, this kind of search is impossible in our
proposal.

Lastly, relational integrity is a desired property for a relational database. It connects two
or more sets using same-value attributes in both sets (e.g.: every value of a column in a table
A exists in a column in table B), and establishes a primary-foreign key relationship. This
way, the existence of a record in an attribute classified as foreign key depends on the existence
of the related record on the other set, in which the primary key is equal to that foreign key.
To implement such feature one must provide to the DBMS capabilities to reinforce relational
integrity rules. In other words, the server must be able to recognize such a relationship to
guarantee it will be respected by issued queries.

Figure 3: Simple diagram describing the interaction between users and products compos-
ing the information regarding an order. Notice that the existence of users and products
is independent, but there is a dependence for orders.

An example of the applicability of this concept is an e-commerce database. Best practices
dictate that user data should be stored separately from products and orders. Thus, one may
model it as in Figure 3. When a new order arrives, it is clear that a user chose some product
and informed the store about his intent to buy it. Users and products are concrete elements.
However, a sale is an abstract object and cannot happen without a buyer and a product. This
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way, to maintain the consistency of the database the DBMS must assure that no sale record
will exist without relating user and product. This can be achieved by constructing the sales
table such that records contain foreign keys for the user and product tables (implying that these
contain attributes classified as primary keys). By definition this feature imposes an inherent
requirement that the DBMS has knowledge about this relationship between records on different
tables. Any approach to protect the attributes against third parties will affect the DBMS itself
and will never really achieve the needed protection. Thus, any effort on implementing secure
relational integrity is at best security through obscurity 5.

6 The winner solution of Netflix’s prize
The winner of Netflix Grand Prize was BellKor’s Pragmatic Chaos team, who built a solution
over the progress achieved in the 2007 and 2008 Progress Prizes [59]. Several machine learning
predictors were combined in the final solution with the objective of anticipating the suitability
of Netflix content for some user considering previous behavior in the platform. The foundation
used for this considered diverse factors, such as:

• What is the general behavior of users when rating? What is the average rating?

• How critic is a user and how this changes over time?

• Does the user demonstrate preference for a specific movie or gender?

• Does the user demonstrate preference for blockbusters or non-mainstream content?

• What property of a movie affects the rating? Is there a correlation between the rating of
a user and the presence of a particular actor in a particular gender?

The strategy used to combine these factors (and many others) escapes the scope of this work.
We should attend only to the necessity of extracting data from the dataset to feed the learning
model.

6.1 Searching the encrypted Netflix’s database
An interesting application of our framework is enabling an entity to maintain an encrypted
database on third party hardware with a similar structure of Netflix’s dataset and being able
to implement a prediction algorithm with minimum data leakage to the DBMS. The database
should be capable of answering the requested predicates regarding user behavior.

Two scenarios must be considered: the recommendation system running on Netflix’s in-
frastructure, and the dataset becoming public. The former offers an execution environment
apparently honest (no one would share data with an openly malicious party) but that can be
compromised at some point. To mitigate the damage, the data owner can implement different
strategies to reduce the usefulness of any leakage that might happen. Thus, data being handled
exclusively in encrypted form on the server is a natural option, since security breaches would
reveal nothing but incomprehensible ciphertexts. This is the best case scenario since the data
owner has as much control of the execution machine as possible, so our framework proposal can
be applied in its full capacity.

As an example of the latter, an important feature required for running the Netflix’s prize is
the capability of in-dataset comparisons. This time any security solution should find the balance
between protecting data secrecy and offering conditions for experimentation. Moreover, we must

5When the security of a system relies only in the lack of knowledge by adversaries about its imple-
mentation details and flaws.
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consider that the execution environment cannot be considered honest anymore. This way, the
suitability of our framework depends on the relaxation of the indexing method. index values
must be published to enable comparisons. For instance, both sides of Lewi-Wu’s ciphertexts
should be published, or even an OPE scheme may be used on the encryption of the index.
From the perspective of the secrecy of ciphertexts, if a IND-OCPA scheme is used then there
will be no security reduction beyond what the corresponding threat model expects, as discussed
in Section 2.1. The adversary learns the ciphertext order but has restricted ability to make
inferences using information acquired from public databases. The only strategy that can be
applied uses the data distribution in the dataset (that can be retrieved by enabling comparisons),
which puts an attacker in this scenario in a very similar position than the persistent passive
attacker.

Given the boundary conditions for privacy preservation, we cannot precisely state the ro-
bustness of our framework in the context of the Netflix prize. It clearly increases the hardness
against an inference attack, since the adversary is unable to observe the plaintext, but the
distribution leaked will give him hints about its content. For instance, the correlation of age
groups and most watched (or better rated) movies. It is a fact that all these are expressed as
ciphertexts, but as previously stated, a motivated adversary may be able to combine such hints
and defeat our security barriers.

Our framework performs much better in the more conservative scenario, where a production
server provides recommendations to users with comparisons controlled by the data owner through
the two-sided index attributes. The impossibility for arbitrary comparisons makes snapshot
attacks completely infeasible.

As previously discussed, a motivated adversary with access to the database may be able to
also retrieve logs and auxiliary collections. Consequently, previous queries may leak the second
side of index ciphertexts and recall the danger of persistent passive attacks. So, an important
feature for future work is the development of a key refreshment algorithm to nullify the usefulness
of such information.

6.2 Data structure
The dataset shared by Netflix is composed by more than 100 million real movie ratings from
480,000 users about 17,000 movies, made between 1999 and 2005, and formatted as a training
test set [7, 59]. It contains a subset of 4.2 million of those ratings, with up to 9 ratings per user.
It consists of:

• CustomerID: A unique identification number per user,

• MovieID: A unique identification number per movie,

• Title: The English title of the movie,

• YearOfRelease: The year the movie was released,

• Rating: The rating itself,

• Date: The timestamp informing when the rating happened.

6.3 Constructing queries of interest over encrypted data
Following we rewrite some of the main predicates required for BellKor’s solution using the
relational algebra of Section 5.2, thus enabling their execution over an encrypted dataset.

Let

• DB be a dataset as described in Section 6.2,
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• AID be the CustomerID related to a particular user (that we shall call Alice),

• BID be the CustomerID related to a particular user different to Alice (that we shall call
Bob),

• MID be the MovieID related to an arbitrary movie in the dataset (that we should refer
as M),

• T = (Tstart, Tend) be a time interval of interest,

• Tfirst-alice be the timestamp of the first rating Alice ever made,

• C() be a function that receives a set and returns the quantity of items contained,

• rH and rL be thresholds for extreme ratings characterizing users that hated or loved a
movie,

• σDate∈T (DB) ≡ σDate≥Tstart(DB) + σDate<Tend(DB),

• f(X) =
∑

x∈X πRating(x)

C(X) .

Then, some of the required predicates for BellKor’s solution are:

• Movies rated by Alice: Returns all movies that received some rating from Alice. For

U(X) = σCustomerID=X(DB),

we have the query
πMovieID(U(AID)). (1)

• Users who rated M: Returns all users that sent some rating for MID. For

M(X) = σMovieID=MID(DB),

we have the query
πCustomerID(M(MID)). (2)

• Average of Alice’s ratings over time: Computes the average of all rates sent by Alice
during a particular time interval T . For

AAID,T = σDate∈T (U(AID)),

we have that

avg(AID, T ) =
{
f(AAID,T ) if C(AAID,T ) > 0,

0, otherwise.
(3)

• Average of ratings for a particular movie M in a timeset: Computes the average
of all rates sent by all users during a particular time interval T for a movie M. For

MMID,T = σDate∈T (M(MID))

we have that

avg(MID, T ) =
{
f(MMID,T ) if C(MMID,T ) > 0,

0, otherwise.
(4)

• Number of days since Alice’s first rating: Computes how many days have been since
the Alice submitted the first rating of movie, relative to a moment I.

dsf(AID, I) = I − πDate(σmin(Date)(U(AID))). (5)
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• Quantity of users who hated M: Counts the quantity of very bad ratingsM received
since its release.

CH(M) = C (σMovieID=MID(σRating≤rH(DB))) . (6)

• Quantity of users who lovedM: Counts the quantity of very good ratingsM received
since its release.

CL(M) = C (σMovieID=MID(σRating≥rL(DB))) . (7)

• Users that are similar to Alice: The similarity assessment between users require the
derivation of a specific metric according to the boundary-conditions. The winning solution
developed a sophisticated strategy, building a graph of neighborhoods considering similar
movies and users and computing a weighted mean of the ratings. For simplicity, we shall
condense two factors that can be used for this objective: the set of common rated movies,
and how close the ratings are. To query the movies rated both by Alice and Bob, let

αAID = πMovieID,RatingA(ρRating,RatingA(U(AID)))

and
βBID = πMovieID,RatingB(ρRating,RatingB(U(BID))).

Then
SimilaritySet (AID,BID) = αAID ./ βBID (8)

returns a sequence of tuples of ratings made by Alice and Bob. A simple approach for
evaluating proximity is to compute the average of the difference of ratings for each movie
returned by Equation 8, as shown in Equation 9.

∑
SimilaritySet(AID,BID)|RatingA− RatingB|
C (SimilaritySet (AID,BID))

(9)

7 Implementation
A proof-of-concept implementation of the proposed framework was developed and made available
to the community under a GNU GPLv3 license [2]. It runs upon the popular document-based
database MongoDB and was designed as a wrapper over its Python driver [15]. Hence, we
are able to evaluate its competence as a search framework as well as the compatibility with a
state-of-the-art DBMS. Moreover, running as a wrapper makes it database-agnostic and restricts
the server to dealing with encrypted data. We choose to implement our wrapper over a NoSQL
database so we could avoid dealing with the SQL interpreter and thus reduce the implementation
complexity. However, our solution should be easily portable to any SQL database because of its
strong roots in relational algebra. Table 1 provides the schemes used for each attribute class,
the parameter size and its security level.

Table 1: Chosen cryptosystems for each attribute presented in Section 5.
Attribute Cryptosystem Parameters Sec. level

static AES 128 bits 128 bits
index Lewi-Wu 128 bits 128 bits

computable (+) Paillier 3072 bits 128 bits
computable (×) ElGamal 3072 bits 128 bits

Lewi-Wu’s ORE scheme relies on symmetric primitives and achieves IND-OCPA. The au-
thors claim that this is more secure than all existing OPE and ORE schemes which are prac-
tical [32]. Finally, Paillier and ElGamal are well-known public-key schemes. Both achieve
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IND-CPA and are based on the hardness of solving integer factorization and discrete logarithm
problems, respectively. Paillier supports homomorphic addition, while ElGamal provides homo-
morphic multiplication. Both are classified as PHE schemes [42, 22]. The implementation of AES
was provided by the pycrypto toolkit [33]; we wrote a Python binding over the implementation
of Lewi-Wu provided by the authors [63]; and we implemented Paillier and ElGamal schemes.
An AVL tree was used as the index structure. It is important to notice that performance was
not the main focus in this proof-of-concept implementation.

The machines used to run our experiments are described in Tables 2 and 3. The former
specifies the machine used to host the MongoDB server, and latter describes the one used to
run the client. Both machines were connected by a Gigabit local network connection.

Table 2: Specifications of the machine used for running the MongoDB instance.
CPU 2 x Intel Xeon E5-2670 v1 @ 2.60GH
OS CentOS 7.3
Memory 16 x DDR3 DIMM 8192MB @ 1600MHz
Disk 7200RPM Western Digital HDD (SATA)

Table 3: Specifications of the machine used for running the queries described in this
document.

CPU 2 x Intel Xeon E5-2640 v2 @ 2.60GH
OS Ubuntu 16.04.2
Memory 4 x DDR3 DIMM 8192MB @ 1600MHz
Disk 7200RPM Western Digital HDD (SATA)

While it was trivial to index the plaintext dataset natively, it was not so simple with the
encrypted version. MongoDB is not friendly to custom index structures or comparators, so we
decided to construct the structure with Python code and then insert it into the database using
pointers based on MongoDB’s native identity codes. Walking through the index tree depends
on a database-external operation at Python-side, calling MongoDB’s find method to localize
documents related to left/right pointers starting from the tree root. Such limitation brings a
major performance overhead that especially affects range queries.

7.1 Netflix’s prize dataset
We used the Netflix’s dataset to measure the computational costs of managing an encrypted
database.

We consider the two threat scenarios discussed in Section 6.1, a recommendation system
running in production, and the disclosure of a real ratings dataset. Both require the ability of
running all queries presented in Section 6.3, differing only in the content that must be inserted in
the encrypted dataset (for instance, how much of the index ciphertexts may be stored). Hence,
to demonstrate the suitability of our framework as a strategy to fulfill the development and
execution of a good predictor in such contexts, and being capable of mitigating damages to user
privacy, we implemented those queries in an encrypted instance of the dataset.

As shown in Table 4, the four attributes chosen are classified as static, which use the faster
encryption and decryption available. Rating is tagged computable for addition and multiplica-
tion, thus being compatible with Equations 3 and 4. We use CustomerID, MovieID, and Date
for indexing. Encrypting the document structure takes 540µs per record.

There is no way to implement integer division over Paillier ciphertexts. Thus, the predictor
may be adapted to use the non-divided result on Equations 3 and 4. Otherwise, a division oracle

38



Table 4: Attribute structure of elements in the Netflix’s prize dataset.
Name Value type Class

CustomerID integer index, static
MovieID integer index, static

Rating integer static,
computable

Date integer index, static

must be provided, to which one could submit their homomorphically added values and ask for
a ciphertext equivalent to its division by an arbitrary integer. This approach does not reduce
security for an IND-CPA homomorphic scheme.

Handling such a large dataset was not an easy task. The ciphertext expansion factor caused
by AES, Paillier and ElGamal cryptosystems was relatively small, but the Lewi-Wu implemen-
tation is very inefficient in this regard, having an expansion of about 400×. This directly affects
the index building and motivated us to explore different strategies to encrypt and load the
dataset to a MongoDB instance in reasonable time.

Again, MongoDB is not friendly for custom indexing. A contribution by Grim, Wiersma and
Turkmen to our code enables us to manage the AVL tree inside the database through JavaScript
code stored inside MongoDB’s engine (the only way to execute arbitrary code in MongoDB) [26].
Thus, our primary approach to feed the DBMS with the dataset was quite simple: encrypt each
record in our wrapper, insert in the database, and update the index and balance the tree inside
the DBMS. The two first operations suffered from an extremely high memory consumption and
by far surpassed our available RAM capacity. However, an even worse problem we faced was
to build the AVL tree. For the first thousand records we could do the node insertion and tree
balancing with a transfer rate of about 600 documents per second, but it dropped quickly as the
tree height increases, reaching less than 1 document per second before insertion of the 10,000th
record.

We found out that the initial insertions required a novel approach. We completely decoupled
the index from the static data encryption and chose to first feed the database with the static
ciphertexts, constructing the entire AVL tree using the plaintext on client-sided memory, and
then inserting it in the database. Moreover, to speed up the index construction we followed
Algorithms 1 and 2 to construct the AVL tree. It takes a sorted list of inputs and builds the
tree with time complexity of O(n) on the list size. As a result of this approach we were able
to build the encrypted database and the index by 3000 documents per second during the entire
procedure.

Algorithm 1 Build an AVL tree using an array of documents.
1: procedure build_index(docs)
2: docssort ← sort(docs);
3: docsgroup ← group(docssort); . Combine equal elements
4: return build_aux(docsgroup, 0, lenght(docsgroup)− 1);
5: end procedure

Table 5 shows the latency of each step we observed during the construction of the AVL
tree-based indexes. The total time to build those 3 indexes was 40 minutes.

The queries we derived in Section 6.3 were ported to our encrypted database, and the
latency for each one can be seen in Table 6. The parameters used for each Equation were
arbitrarily selected. The CustomerIDs for Alice and Bob (AID and BID) were 1061110 and
2486445 respectively, while MID was fixed as 6287. The time interval used was 01/01/2003 to
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Algorithm 2 Recursively builds an AVL tree with a sorted array of documents without
repeated elements. Receives the array itself, and the indexes for the leftmost and rightmost
elements to be handled in each recursive call.

1: procedure build_aux(docs, L, R)
2: if L = R then
3: return new_node(docs[L]);
4: else if L+ 1 = R then
5: left_node← new_node(docs[L]);
6: right_node← new_node(docs[R]);
7: left_node.right = right_node;
8: left_node.height = 1;
9: return left_node;

10: else
11: M ← L+ b(R− L)/2c;
12: middle_node← new_node(docs[M ]);
13: middle_node.left← build_aux(docs, L,M − 1);
14: middle_node.right← build_aux(docs,M + 1, R);
15: lh← middle_node.left.height;
16: rh← middle_node.right.height;
17: middle_node.height = 1 +max(lh, rh);
18: return middle_node;
19: end if
20: end procedure

Table 5: Latency for each step in the construction of an AVL tree following Algorithm 1
for each index attribute specified in 4.

Attribute sort (s) group (s) build_index (s)
CustomerID 329 459 129

MovieID 270 161 2
Date 187 197 5

40



01/01/2004. Lastly, we defined a “loved” rating as those greater than 3, and “hated” rating as
those lower than 3. We applied some efforts in optimizing the execution, however these results
can still be improved.

As it can be seen, complex queries composed by range selections, as well as those with
numerous outcomes, suffered from the slow communication between server and the client. The
latter influenced even the plaintext results. The outcome of Equation 1 is quite small, requiring
much less time to return than the outcome of Equation 2 (the number of movies rated by a user
is much smaller than the number of users that rated a movie).

The time interval selection in Equations 3 and 4 required our implementation to visit many
nodes in the index tree for Date. Because each iteration requires a back and forth between the
server and the client, this dramatically impacted the performance. The latencies for Equations 1
and 5 were only 1.4 times higher in the encrypted database, however it reached 710 times for
Equation 3. Lastly, Equations 6 and 7 depend on Paillier’s homomorphic additions. This implied
in a factor-12 slowdown.

Table 6: Execution times for implementations of the Equations presented in Section 6.3 on
an encrypted MongoDB collection and an equivalent plaintext version. Each row contains
the latency for the entire circuit required by the respective Equation and returning the
outcome to the client. Times are computed as the average for 100 independent executions.
The machine and parameters used in each cryptosystem follow those defined in Section 7.

Equation Encrypted Plaintext
1 16.6 ms 11.9 ms
2 2 s 850 ms
3 2.7 s 3.8 ms
4 2.7 s 1.0 s
5 16.8 ms 11.8 ms

6 and 7 12 ms 1.0 ms
9 603 ms 200 ms

The implementation of queries based on Equations 3 and 4 took the previous suggestion and
skipped the final division. We believe this does not undermine any procedure that eventually
consumes this outcome.

The optimal implementation of Equations 6 and 7 requires indexing of MovieID and Rating
attributes. However, due to limitations in our implementation, rather than indexing the latter
we use linear search over the outcome of the movie selection on client-side. Our approach for
building indexes use the set data structure of MongoDB documents. Yet, in the most recent
release such structure holds up to 16MB of data, much smaller than the required for indexing
the entire dataset for Rating with our strategy.

Lastly, Equation 8 was implemented aiming at the joining of data regarding two users, Alice
and Bob. We let the evaluation of such information by a similarity-evaluation function as future
work.

8 Conclusion
We presented the problem of searching in encrypted data and a proposal of a framework that
guides the modeling of a database with support to this functionality. This is achieved by
combining different cryptographic concepts and using different cryptosystems to satisfy the
requirements of each attribute, like order-revealing encryption and homomorphic encryption.
Over this approach, a relational algebra was built to support encrypted data composed by:
projection, selection, Cartesian product, difference, union, rename, and join-like operators.
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An overview of the security provided is discussed, as well as a performance analysis about
the impact in a realistic database. As a case study we explored the Netflix prize, which pub-
lished an anonymized dataset with real-world information about user behavior which was later
deanonymized through correlation attacks involving public databases.

We offered a proof-of-concept implementation in Python over the document-based database
MongoDB. To demonstrate its functionality, we selected and ran some of the main predicates
required by the winning solution of the Netflix Grand Prize and measured the performance
impact of the execution in a encrypted version of the dataset. We conclude that our proposal
offers robustness against a compromised server and we discuss how it would help to avoid the
deanonymization of the Netflix dataset. In comparison with CryptDB, our proposal provides
higher security, since it delegates exclusively to the data owner the responsibility of encrypting
and decrypting data. This way, privacy holds even in a scenario of database or application
compromise.

As future research objectives we can mention:

• Extend the scope to associative arrays: Despite being powerful on SQL, Codd’s relational
algebra is not completely applicable for non-relational databases. For instance, NoSQL
and NewSQL databases lack the concept of joining. A more convenient foundation for such
context is algebra of associative arrays [30]. Hence, the formalization of our primitives in
such algebra would be an interesting work.

• Reduce the leakage of index construction in the database: Our proposal leaks both sides
of index ciphertexts to enable the index construction. At this moment, an eavesdropper
monitoring queries would learn all information required to freely compare the exposed
ciphertexts. As discussed in this document, such capability must be restricted, under risk
of enabling an inference attack.

• Key refreshment algorithm: A persistent passive attacker is capable of learning the re-
quired information to perform comparisons through the entire database, just by observ-
ing issued queries and its outcome. Thus, the framework primitives must be improved
to support an algorithm capable of avoid any damage caused by the knowledge of such
information.

• Hide repeated queries: Even with encrypted queries and outcomes, the access pattern in
a database may indicate repeated queries and the associated records. A technique such
as ORAM could be useful to protect such information [55].

• Explore different databases: As stated, MongoDB is a very popular NoSQL database.
However, it is not friendly to custom indexing or third party code running in its engine.
Thus, to replace it by a more appropriate database could provide a more productive
system.

• Improve performance of our implementation: Our implementation had as objective to be
a proof-of-concept and demonstrate how the proposal works. The development of a space
and speed-optimized versions is an important next step.
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2.2 Efficient implementation of homomorphic encryp-
tion

This publication is entitled “Faster Homomorphic Encryption over GPGPUs via Hierar-
chical DGT” and was published at the Financial Cryptography and Data Security 2021
conference, on March 2021. This paper is a natural follow up of my master’s disserta-
tion, which investigates the efficient implementation of homomorphic encryption schemes
on GPUs [3]. This time, we aim the Fan-Vercauraten (BFV) proposal, and combine
novel methods in the literature with classical, as the hierarchical design of DFT-based
algorithms.
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Abstract

Privacy guarantees are still insufficient for outsourced data processing in the
cloud. While employing encryption is feasible for data at rest or in transit, it is not
for computation without remarkable performance slowdown. Thus, handling data in
plaintext during processing is still required, which creates vulnerabilities that can be
exploited by malicious entities. Homomorphic encryption schemes enable computa-
tion over ciphertexts without knowing the related plaintexts or the decryption key.
This work focuses on the challenge of developing an efficient implementation of the
BFV scheme on CUDA. This is done by combining and adapting different literature
approaches, as the double-CRT representation and the Discrete Galois Transform.
Moreover, we propose and implement an improved formulation of the DGT inspired
by classical algorithms, which computes the transform up to 2.6 times faster than
the state-of-the-art. By using these approaches, we obtain up to 3.6 times faster
homomorphic multiplication.

Keywords— Fully Homomorphic Encryption, BFV, CUDA, Polynomial multiplication,
Privacy-preserving computing

1 Introduction
With the growing data collection by governments and companies, protecting its secrecy becomes
as important as processing and extracting useful information. However, how to efficiently collect
and compute user data without undermining their privacy is an open problem. System breaches
may happen even when data holders choose the most conservative practices and never share data
intentionally.

The Breach Level Index provides distressful statistics about data leakage. It states that most
breaches occur by accidental loss on leaving plaintext data exposed inadvertently. Attacks from
malicious parties, which explore vulnerabilities to subvert security mechanisms, are also far from
negligible [29]. Data can be protected by encryption even in case of leakage. However, encryption-
decryption cycles during its lifespan create a weak point in the system’s security. Thus, building
the system roots attached to mathematical guarantees and dispensable decryption is the only
way to achieve a more reliable security.

Homomorphic Encryption (HE) schemes enable data processing while protecting its confi-
dentiality. They allow the evaluation of arithmetic circuits over ciphertexts by a third party
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without any knowledge of the corresponding plaintexts or the decryption key, preventing the
computation’s inputs and outcome to be learned. Hence, HE is a natural candidate for solving
privacy issues caused by malicious third parties, careless administrators, or other security flaws
during the processing, such as side-channel vulnerabilities.

Many of the HE schemes available in the literature rely on the hardness of the Ring-Learning
with Errors (RLWE) problem. This assumption offers a strategy for protecting messages, encoded
as polynomials in Rq = Zq[x]/(f(x)), by adding noise in a way that it can only be removed
when given a trapdoor. There are several proposals following this approach such as BFV [21],
CKKS [13], and TFHE [14]. All depend on polynomial arithmetic as the main building block,
so its efficient implementation is critical for adopting HE in the real-world.

CUDA is an important tool for the efficient implementation of polynomial arithmetic. It’s
a SIMD architecture developed and maintained by NVIDIA for employing the data parallelism
potential of a GPU in tasks beyond graphical processing. However, the particularities of CUDA
impose challenges for its cryptographic use. Its processing flow demands careful planning to
align possible conditional branches with certain thread groups, and its memory paradigm con-
siders several structures with different dimensions and latency characteristics, separated from
the machine’s main memory. Moreover, at this point, no general-purpose cryptographic library
or polynomial arithmetic framework supports CUDA. Hence, these constraints motivate the
development of a complete toolkit to work as an arithmetic engine aimed at RLWE-based cryp-
tosystems.

Our contributions. This work presents mathematical tools and techniques for the efficient
implementation of the BFV scheme in CUDA. We follow the literature by employing the Residue
Number System (RNS) as the best approach for handling the multiprecision arithmetic required,
and the Halevi, Polyakov, and Shoup modification of BFV to solve the division and rounding
problem in the RNS domain [9, 24]. The main contributions of this study are:

• A novel hierarchical formulation of the Discrete Galois Transform (DGT) that offers about
two times lower latency on GPUs than the best version available in the literature. More-
over, we collect evidence that suggests it is faster than the commonly used Number Theo-
retic Transform (NTT). Such formulation is inspired by Bailey’s version of the Fast Fourier
Transform [7].

• Compatible choice of parameters between the DGT and the RNS representation. We show
that the double-CRT representation proposed by Gentry et al.is a better implementation
design than the usual approach of working with Mersenne or Solinas primes in different
rings [10].

• A more efficient, GPU-optimized, state machine which reduces the need for moving data in
and out of the DGT domain and between the main memory and the GPU global memory.

These contributions are not limited to the BFV cryptosystem and can be easily applied to
other RLWE-based schemes, such as CKKS. Moreover, we provide latency benchmarks from a
proof-of-concept implementation named spog, which was built based on the methods above.
Two relevant works employing the DGT are considered for comparison with our results: Badawi,
Polyakov, Aung, Veeravalli, and Rohloff [4]; and Badawi, Veeravalli, Mun, and Aung [6]. When
considering homomorphic multiplication as the main performance-critical operation, spog of-
fers higher performance against these works, surpassing a 3.6-factor performance improvement
against the latter.

2 Mathematical background
The efficient implementation of an RLWE-based cryptosystem on CUDA requires carefully de-
signed building blocks for adjusting the operations to the architecture’s limitations. The BFV
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cryptosystem, as well as other HE proposals, relies on large parameters for achieving proper
security levels. This imposes a challenge in the light of GPGPUs’ 1 constraints, for both the
size of the coefficients, much larger than the native integer instruction set; and the polynomial
arithmetic, that requires highly-optimized algorithms to reduce the computational complexity
and improve the scalability of expensive operations, such as polynomial multiplication.

This Section describes the Fan and Vercauteren cryptosystem; presents the Residue Number
System (RNS) representation, used to avoid the multiprecision arithmetic; and introduces the
Discrete Galois Transform (DGT), a more suitable variant of the Fast Fourier transform (FFT)
to GPU implementation.

2.1 The BFV cryptosystem
Fan and Vercauteren proposed a variant of Brakerski’s homomorphic cryptosystem, nowadays
referred to as BFV, that relies on the hardness of the Ring-Learning With Errors (RLWE)
problem [21]. Classified as a leveled homomorphic encryption scheme (LHE), it is currently one
of the most efficient cryptosystems of its class concerning speed and memory consumption and
remains untouched by recent advances in cryptanalysis [1, 16].

Let p > 1 be an integer and n a power-of-2. BFV’s basic arithmetic is built upon polynomial
rings of the form Rp = Zp[X]/(Xn + 1). The scheme defines the following parameter set: a
security parameter λ; a decomposition base ω > 1; the modulus t ≥ 2 that determines the plain-
text domain Rt; and the modulus q ≫ t that determines the ciphertext domain Rq. Moreover,
it makes use of an error distribution χerr, usually a zero-mean discrete Gaussian distribution
parameterized by the standard deviation σ.

Let l = ⌊logω q⌋. The main procedures of BFV are the following:

KeyGen(λ, ω): Let sk ← R3 be the secret key. Sample a ← Rq uniformly at random and
e ← χerr, and define the public key pk = (b, a) = ([−(a · sk+ e)]q , a). Generate the
evaluation key evk as: Sample ai ← Rq uniformly at random, ei ← χerr, and compute
γi =

(
[−(ai · sk+ ei) + ωi · sk2]q,ai

)
. Define evk =

⋃l
i=0 γi. Output (sk, pk, evk).

Encrypt(m, pk): for a plaintext message m ∈ Rt and a public key pk = (b, a), sample u← R2

uniformly at random and e1, e2 ← χerr, and compute the ciphertext
c =

(
[∆m+ b · u+ e1]q , [a · u+ e2]q

)
, where ∆ = ⌊q/t⌋.

Decrypt(c, sk): for a ciphertext c = (c0, c1) and the secret key sk = s, recover the plaintext
m =

[⌊
t
q [c0 + c1 · s]q

⌉]
t
.

Add(c0, c1) : for ciphertexts c0 = (c0,0, c0,1) and c1 = (c1,0, c1,1), compute
cadd = ([c0,0 + c1,0]q , [c0,1 + c1,1]q).

Relin((c0, c1, c2), evk) : for c0, c1, c2 ∈ Rq, evk = (b, a), and a decomposition of c2 in base w

such that c2 =
∑l

i=0 c
(i)
2 wi, return

([
c0 +

∑l
i=0 bi · c(i)2

]
q
,
[
c1 +

∑l
i=0 ai · c(i)2

]
q

)
.

Mul(c0, c1, evk) : for ciphertexts c0 = (c0,0, c0,1) and c1 = (c1,0, c1,1), compute

c =

([⌊
t
q · c0,0 · c1,0

⌉]
q
,
[⌊

t
q · (c0,0 · c1,1 + c0,1 · c1,0)

⌉]
q
,
[⌊

t
q · c0,1 · c1,1

⌉]
q

)

and return cmul = Relin(c, evk).
1GPGPU, acronym for General-Purpose Graphics Processing Unit.
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2.2 Residue Number System
As can be observed in Section 2.1, BFV depends upon computationally expensive polynomial
operations. Moreover, the literature reveals that big integer arithmetic is required to offer proper
security levels [28]. A common strategy in implementations of BFV is to use the Chinese Re-
mainder Theorem (CRT) on the Residue Number System (RNS) to map large integers to a set
of smaller residues capable of being evaluated by processor’s native instructions [19, 9].

Definition 1 (CRT) Let x be a polynomial in Rq, and {p0, . . . , pℓ−1} a set of pairwise coprimes.
The CRT decomposition results in a set X with ℓ residues such that CRT(x) =

{
[x]p0 , . . . , [x]pℓ−1

}
.

The inverse CRT(X) is defined as:

[
∑ℓ−1

i=0
M
pi
·
[(

M
pi

)−1
Xi

]

pi

]

M

= x, where M =
∏ℓ−1

i=0 pi.

Addition and multiplication in the RNS domain work by applying the operation residue-wise.
However, division and modular reduction are more complicated and require a more advanced
technique, as described next.

2.3 Division and rounding inside the RNS domain
Some parts of BFV are hardly compatible with RNS, such as the coefficient-wise division and
rounding used in decryption and homomorphic multiplication. Motivated by that, two variants
of BFV can be found in the literature, BEHZ-BFV and HPS-BFV, which propose modifications
to the cryptosystem to support them in the RNS domain [8, 24].

Let Q = {q0, q1, . . . , qℓ−1} be a RNS basis which we can use to represent any ciphertext, as
described in Section 2.2. BEHZ-BFV and HPS-BFV claim that the division and rounding can
be computed by extending base Q to a new basis B = {b0, b1, . . . , bk−1} such that

∏
qi <

∏
bj .

While BEHZ-BFV looks for an exact rounding, HPS-BFV shows how to build operations to
minimize the error and merge it into the natural cryptosystem noise. This allows a much simpler
procedure, with a lower computational cost, to be used. HPS-BFV’s authors present an analysis
that demonstrates that their procedures are simpler and have lower complexity and noise growth
than those in BEHZ-BFV.

The HPS-BFV methods are composed by a basis extension procedure, which computes a
polynomial representation in a base B from its representation in base Q; and two methods to
scale down and round an integer in its RNS representation by t/q, one to be used on decryption,
which is a more straightforward scenario that requires the output to be in base {t}, and one for
homomorphic encryption, which is a bit more complicated since the outcome must lie in base B.

Both variants of BFV take the fact that q is not defined as a prime integer. Thus, they
represent and work with Rq polynomials in an RNS base composed by a factorization of q, i.e.
q =

∏ℓ−1
i=0 qi. One of the advantages of doing this is the automatic merge of the RNS bounds

with the ciphertext coefficient domain.

2.4 Discrete Galois Transform
The Fast Fourier Transform (FFT) is a well-known method that offers linear computational
cost for polynomial multiplication when the operands lie in its domain and quasi-linear when
considering the computation of the transform itself. However, the FFT is defined on C, which
makes it harder for its direct applicability in the context of RLWE-based cryptosystems, defined
on integer domains. Thus, variations offering the same functionality but built upon integer
arithmetic were proposed in the literature, such as the Number Theoretic Transform (NTT) over
GF (p), and the Discrete Galois Transform (DGT) over GF (p2), for some convenient choice of a
prime number p [26, 17].

52



The main difference of DGT over NTT is caused by their domains, which results in memory
bandwidth savings, as deeply discussed in Sections 3 and 4. Despite this, they are sufficiently
similar so that they share most of the computation data paths and their efficient implementation
strategies. Furthermore, as GF (p2) can be represented in the set of Gaussian integers Zp[i] =
{a+ ib | a, b ∈ Zp}, it uses finite field arithmetic with Zp elements as building blocks, which
resonates with the representation used by RNS and BFV. In Definition 2 we introduce the base
formulation, as done in by Badawi et al.[5].

Definition 2 (Discrete Galois Transform) Let p ≥ 3 be a prime number, x = {x0, . . . , xn−1}
be a vector of length n such that xk ∈ GF (p2) for 0 ≤ k < n, and g be an n-th primitive root of
unity in GF (p). Then, the DGT and its inverse are defined as: Xk =

∑n−1
j=0 xjg

−jk ∈ GF (p2)

and xk = n−1
∑n−1

j=0 Xjg
jk ∈ GF (p2), respectively.

3 Efficient CUDA operation on cyclotomic rings
An efficient implementation of the arithmetic of cyclotomic polynomial rings requires a conve-
nient approach for polynomial multiplication and a proper data representation, not only with
low computational complexity but also that fits well in the processing hardware. This Section
provides optimization strategies for implementing polynomial arithmetic on CUDA.

3.1 Fast polynomial multiplication
The complexity to compute a polynomial multiplication using a textbook formula is Θ

(
n2

)
for

n-degree polynomials, which means that performance will be seriously affected with the increase
of the degree.

In the context of cryptosystems based on RLWE, as observed by Lindner and Peikert, security
is strongly related to the degree of the polynomial ring [25]. Specifically on BFV, Player concludes
that a parameter set nowadays considered secure, with an estimated security upper bound close
to λ = 128, requires n between 211 and 215 [28]. Hence, an efficient implementation of polynomial
multiplication for operands with a large degree is vital for performance.

FFT-based transforms, such as the NTT, provide a domain in which the polynomial multipli-
cation complexity is reduced to Θ(n), and among those, the DGT is a promising variant defined
over GF (p2). As introduced in Section 2.4, this field can be represented as the set of Gaussian
integers Zp[i] = {a+ ib | a, b ∈ Zp}, which enables the polynomial folding of inputs and conse-
quently halves their degree. This folding works such that, for a polynomial P (x) =

∑n−1
j=0 aj ·xj ,

we have fold(P (x)) =
∑n/2−1

j=0 (aj + i · aj+n/2) · xj , for i =
√
−1 and n even.

Considering the use of Gaussian integer arithmetic [3], a first impression may be that the
increased cost of the arithmetic nullifies the reduction of the polynomial degree due to the
quadratic extension. However, it is important to notice that, by working with half the coefficients,
only half the roots, like those in Definition 2, are required compared to the FFT or NTT. In this
way, in a memory-constrained scenario, this property implies a speedup caused by fewer memory
transactions and enables a more coalesced pattern. In the case of CUDA, such operations may
target the GPU’s global memory, which is significant in size but has high latency, or even shared
or constant memories, which are fast but very small. The resulting increased arithmetic density
favors GPU implementations.

Badawi et al.propose Algorithm 1 for polynomial multiplication through the DGT. It first
folds both input signals and then applies a twisting by powers of n/2-th primitive roots of i, which
provides a negacyclic convolution. This equips the algorithm with a free polynomial reduction
by a cyclotomic polynomial [17]. Finding these roots is a complex computational task usually
performed by brute force when p is sufficiently small. Otherwise, numerical methods may be
used. We offer in Appendix B a suggestion for their construction.
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Algorithm 1: Polynomial multiplication in Zp[x]/(x
n + 1) via DGT

Input: Polynomials a, b ∈ Zp[x]/(x
n + 1), p a prime number, n a power-of-two

integer, and h a primitive n
2
-th root of i modulo p.

Output: c = a · b ∈ Zp[x]/(x
n + 1).

1 for j = 0; j < n/2; j = j + 1 do
2 a′j = aj + iaj+n/2 // Folding the input polynomials
3 b′j = bj + ibj+n/2

4 for j = 0; j < n/2; j = j + 1 do
5 a′j = hj · a′j (mod p) // Applying the right-angle convolution
6 b′j = hj · b′j (mod p)

7 a′ = DGT(a′) // Computing the DGT of both operands
8 b′ = DGT(b′)
9 for j = 0; j < n/2; j = j + 1 do

10 c′j = a′j · b′j (mod p) // Component-wise multiplying in Zp[i]

11 d′ = IDGT(c′) // Computing the IDGT of the multiplication result
12 for j = 0; j < n/2; j = j + 1 do
13 u = h−j · d′j (mod p) // Removing the twisting factors
14 cj = ure // Unfolding the result
15 cj+n

2
= uim

16 return c

There is no need for the bit-reversal procedure in the context of implementing a polynomial
multiplication. Thus, an efficient implementation avoids it by selecting a decimation-in-frequency
(DIF) algorithm for the forward transform and a decimation-in-time (DIT) algorithm for the
inverse, as defined by Chu and George [15]. In this work, we follow the proposal of Badawi et
al.and choose the Gentleman-Sande, a DIF, and the Cooley-Tukey, a DIT, data-paths for the
forward and inverse versions of the DGT, respectively [5].

The canonical formulation of these contains a combination of three nested loops, which
increases the complexity of its implementation, especially on the CUDA architecture. This
structure creates dependencies between the loops and disturbs parallel execution. So, for better
compatibility with the programming model, they have to be rewritten by wiping out one layer
of nesting and leaving only two loops, an outer loop related to the stride and an inner loop
that asserts the access patterns. For each outer loop iteration, the inner one can be completely
parallelized. Our proposals have a much weaker dependency between iterations and can be seen
in Algorithms 2 and 3.

3.2 An improved and hierarchical DGT
The procedures described in Algorithms 2 and 3 require synchronization at the end of each
iteration of the outer loop. On CUDA, this enforces a limitation on the polynomial degree at the
cost of latency, since the only data structure that provides such synchronicity at the hardware
level is a Thread Block, and its dimension is limited to 1024 threads in modern hardware. An
alternative implementation involves calling a different CUDA kernel for each iteration, forcing a
CPU-sided synchronization. This incurs a considerable overhead caused by several kernel calls.

In this scenario, we propose a technique for splitting the DGT transform into smaller blocks
that better fit the processing hardware and does not require synchronizing large sets of threads,
called hierarchical DGT. It is an adaptation of the four-step FFT algorithm, initially proposed
by David H. Bailey and later on revisited by Govindaraju et al. [7, 23].
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Algorithm 2: Rewritten forward DGT via Gentleman-Sande
Input: A folded vector x ∈ Z[i]k, p a prime number, k a power-of-two integer,

and g a primitive k-th root of unity modulo p.
Output: x← DGT(x) in bit-reversed ordering.

1 for s = 0; s < ⌊log(k)⌋; s = s+ 1 do
2 m = k

2(s+1)

3 for l = 0; l < k/2; l = l + 1 do
4 j = 2ml

k

5 i = j +
(
l mod k

2m

)
· 2m

6 a = g
j· k

2(log(k)−s) (mod p)
7 (u, v) = (x[i], x[i+m])
8 (x[i], x[i+m]) = (u+ v, a · (u− v)) (mod p)

9 return x

Algorithm 3: Rewritten inverse DGT via Cooley-Tukey
Input: A vector x ∈ Z[i]k in bit-reversed order, p a prime number, k a

power-of-two integer, and g a primitive k-th root of unity modulo p.
Output: x← k · IDGT(x) in standard ordering.

1 m = 1
2 for s = 0; s < ⌊log(k)⌋; s = s+ 1 do
3 for l = 0; l < k/2; l = l + 1 do
4 j = 2ml

k

5 i = j +
(
l mod k

2m

)
· 2m

6 a = g−j·
k

2s+1 (mod p)
7 (u, v) = (x[i], x[i+m])
8 (x[i], x[i+m]) = (u+ a · v, u− a · v) (mod p)

9 m = 2 ·m
10 return x

The general idea of the hierarchical DGT and hierarchical inverse DGT, referred to respec-
tively as HDGT and HIDGT, is to split the DGT computation over Zp[x]/(x

n + 1) into compu-
tations in smaller rings with optimal degree near

√
n. In practice, the vector of coefficients is

treated as a matrix and the DGT is performed over the columns and rows of this matrix. The
objective of this is to avoid the case in which one is unable to compute the DGT of an entire
polynomial in a single CUDA kernel call. We move to a higher granularity approach in which
we apply the transform multiple times over arbitrary small polynomials that can perfectly fit in
our processing architecture.

The HDGT is described in Algorithm 4. Firstly, the polynomial a(x) is represented by
taking its coefficient embedding as a = (a0, a1, . . . , an−1). To be represented in the DGT domain
GF (p2), a ∈ Zn

p is folded as a (n/2)-size vector of Gaussian integers ã ∈ Zp[i]
n/2, as described

in Section 3.1. In the Algorithm, the “right-angle” convolution is given by multiplying the j-th
coefficient of ã by hj , for j ∈ Zn/2, where h is the (n/2)-th primitive root of i in Zp[i].

After the folding and twisting procedures, the (n/2)-length vector of Gaussian integers ã is
treated as a matrix with dimensions (Nr, Nc). These dimensions shall be chosen so that each
coefficient’s subset fits in the processing hardware. In our case, the objective is to find a subset
that fits in the GPU’s shared memory so that the DGT can be performed in a single Thread
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Block.
Since the bit-reversal is not used in Algorithm 2, the called “step-2” of Bailey’s method has

to be rewritten. In line 8, the twiddle factors are the powers of g, the (n/2)-th root of unity
modulo p. Since the output of the DGT is not corrected from the bit-reversed order, the twiddle
factors become gbit-reversal(j)·k instead of gj·k, which matches the position of the corresponding
element in ã when it is seen as a matrix.

Algorithm 4: Hierarchical forward DGT
Input: A polynomial a ∈ Zp[x]/(x

n + 1), p a prime number, n = 2 ·Nr ·Nc a
power-of-two integer, h a primitive n/2-th root of i modulo p, and g a
primitive n/2-th root of unity modulo p.

Output: ã = HDGT(a).
1 for j = 0; j < n/2; j = j + 1 do
2 ãj = aj + iaj+n/2 // Fold the input polynomial
3 ãj = ãj · hj (mod p) // Twist the folded polynomial
4 for k = 0; k < Nc; k = k + 1 do
5 ã_,k = DGT(ã_,k) // Step 1: Apply the DGT through Nc columns
6 for j = 0; j < Nr; j = j + 1 do
7 for k = 0; k < Nc; k = k + 1 do
8 ãj,k = ãj,k · gbit-reversal(j)·k (mod p) // Step 2: Multiplication by the

twiddle factors in bit-reversal order
9 for j = 0; j < Nr; j = j + 1 do

10 ãj,_ = DGT(ãj,_) // Step 3: Apply the DGT through the Nr rows
11 return ã

The inverse counterpart of the hierarchical DGT simply executes the inverse steps of the
forward transform, and is described in Algorithm 5. It adopts the IDGT transform via Cooley-
Tukey, described in Algorithm 3, without bit-reversing the input vector. The algorithm executes
the inverse steps of the forward transform by first applying the IDGT over the rows of ã. The
twiddle factors are removed by multiplying âj,k by g−bit-reversal(j)·k, since the column indexes
of the output of the previous step still are in bit-reversed order. Considering that the powers of
g can be precomputed, they can be multiplied by N−1c , avoiding the additional multiplication.
Finally, the IDGT is applied over the columns of â and the matrix indexes are back to standard
ordering. Following the same approach, the powers of h−1 can be precomputed already multiplied
by the scalar N−1r . This avoids the multiplication by the scaling factor when applying the IDGT
over the columns of â.

As in FFT and NTT, the two operands are evaluated using the HDGT for further point-wise
multiplication. The polynomial corresponding to a · b in Zp[x]/(x

n+1) is obtained by computing
the HIDGT.

3.3 Polynomial representation and memory locality
The usability of an RLWE-based cryptosystem requires the careful selection of a parameter set
that satisfies all the security constraints of the application. For instance, with BFV one must
select q, t, n, and σ such that a security level λ is achieved. More than that, these parameters
together determine the multiplicative depth supported by the scheme. Thus, as discussed by
Fan and Vercauteren, the selection of such parameters is too complex to be affected by the
particularities of the implementation [21].

A constraint for choosing those is the hardware instruction set. By selecting a big q one
may be confronted by the lack of hardware support for native processing of the coefficients.

56



Algorithm 5: Hierarchical inverse DGT
Input: ã = HDGT(a), p a prime number, n = 2 ·Nr ·Nc a power-of-two integer,

h a primitive n/2-th root of i modulo p, and g a primitive n/2-th root of
unity modulo p.

Output: A polynomial a ∈ Zp[x]/(x
n + 1).

1 for j = 0; j < Nr; j = j + 1 do
2 âj,_ = IDGT(ãj,_) // Step 3: Apply IDGT to each of Nr rows
3 for j = 0; j < Nr; j = j + 1 do
4 for k = 0; k < Nc; k = k + 1 do
5 âj,k = âj,k · g−bit-reversal(j)·k ·N−1c (mod p) // Step 2: Remove twiddle

factors
6 for k = 0; k < Nc; k = k + 1 do
7 â_,k = IDGT(â_,k) // Step 1: Apply IDGT to each of Nc columns
8 for j = 0; j < n/2; j = j + 1 do
9 âj = âj · h−j ·N−1r (mod p) // Remove the twisting

10 aj = âjre // Unfold the output polynomial
11 aj+n

2
= âjim

12 return a

Through RNS, as described in Section 2.2, we handle this by splitting big integers in small
residues following the limits of the underlying machine.

The link between the cryptosystem and RNS must be carefully designed so that data secrecy
is provided with suitable performance. For that, Gentry et al.suggested the double-CRT repre-
sentation, which encapsulates data into two layers [22]. The first layer is the RNS representation,
as described in Definition 1. After that, a set of polynomial residues with full support for native
hardware evaluation of addition and multiplication is obtained. However, we still need a second
layer for the latter, since the multiplication of polynomials can achieve a quite high computa-
tional complexity without some well-designed algorithm, as discussed in Section 3.1. Because of
that, the second layer consists of moving each residue, individually, to a different domain with a
convenient property for efficient polynomial multiplication. The original proposal of double-CRT
is the use of the NTT as this transform, but a similar approach using the FFT would also be
expected. This work, however, proposes that the second layer of the double-CRT should use
the DGT instead of the NTT since the former appears to suit much better the cyclotomic ring
arithmetic in GPUs and presents more efficient memory access patterns [5].

Another design decision, widespread to HE implementations, is the selection of a single special
prime p for the application of the transform over all RNS residues [18, 20]. For instance, let x be a
polynomial and {q0, . . . , qℓ−1} a set of ℓ pairwise coprimes, then

{
DGTp([x]q0), . . . ,DGTp([x]qℓ−1

)
}

is the set of transformed residues. By using such a prime, one is capable of taking advantage
of their intrinsic mathematical properties, as in the selection of a Mersenne or Solinas prime,
which enables the use of a very efficient modular reduction. Nonetheless, this approach does
not interplay well with the RNS layer and requires algorithmic efforts to correct these modular
reductions and keep consistency for each residue. In this way, we propose a simpler solution
by computing the transform layer using the coprime related to each residue, at the cost of a
more expensive modular reduction since, in most cases, there are not enough special primes
for the required number of residues. Thus, in this representation, the set of residues becomes{
DGTq0([x]q0), . . . ,DGTqℓ−1

([x]qℓ−1
)
}
. Moreover, without the need for those corrections, we

become capable of increasing RNS’ residues to the biggest supported word size of the target
architecture, reducing the number of residues needed. By choosing q =

∏ℓ−1
i=0 qi we establish a

bond between BFV, RNS, and the DGT.
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Lastly, our state machine proposal targets the insistent maintenance of data in our version
of the double-CRT representation in GPU’s memory. Data copy between the main memory and
the GPU’s memory has high latency and must be avoided.

4 Experimental results
In this Section we present spog2, a proof-of-concept implementation that consolidates the
aforementioned techniques by exploring parallel processing on GPGPUs through CUDA.

Designed from scratch, spog is a modular implementation in which the arithmetic opera-
tions are separated from the cryptosystem. The polynomial operations were implemented on a
sister library named cuPoly, while BFV was implemented separated on spog-BFV. Both are
based on CUDA and closely follow the sketch provided in Section 3, pursuing low-latency meth-
ods with a simple API and stretching the size of the residues to the highest supported by modern
CUDA-supported GPUs, which is 63-bit residues with 1 bit for storing the sign. By doing this,
we guarantee that BFV can be easily replaced by any other scheme based on the RLWE; thus,
our work is not restricted to a single scheme. The entire arithmetic implementation can also be
replaced without affecting the cryptosystem code. Hence, spog is flexible enough to encourage
future work to develop and test different setups using the presented libraries.

cuRAND, a NVIDIA probabilistic library, was used for the sampling required by the BFV.
This library offers sampling directly to the GPU memory, avoiding the cost of data copy. Sam-
pling uniformly at random from Rx is implemented through its uniform sampler and the result is
reduced by x. On the other hand,the discrete Gaussian distribution is not supported by this li-
brary. Because of that, an alternative implementation works by truncating a normal distribution,
natively supported by cuRAND. The statistical validity of this design still needs to be asserted
at the cost of compromising the security. Moreover, to the best of our knowledge, cuRAND lacks
sufficient scrutiny by the scientific community so that it can be seen as cryptographic secure.
However, this is a common implementation decision in the literature and is also done by the
related works cited in Section 4.1.

spog and cuPoly source code are available to the community under a GNU GPLv3 li-
cense [2].

4.1 Related work
We consider Badawi, Polyakov, Aung, Veeravalli, and Rohloff, work, referred as BPAVR, the
state-of-the-art implementation in GPUs for BFV [4]. It complements Halevi, Polyakov, and
Shoup proposal and provides the first implementation of the HPS-BFV method on a high-end
NVIDIA Tesla V100 GPU, demonstrated by the authors to be the fastest and most scalable
variant of the scheme when compared to BEHZ-BFV [24, 8].

BPAVR do not describe all details regarding their performance results, only presenting la-
tency measurements for decryption and homomorphic multiplication. Because of that, and the
fact of their source code is not publicly available, we also consider a similar work of Badawi, Veer-
avalli, Mun, and Aung, which offers timings for encryption, decryption, homomorphic addition,
and homomorphic multiplication for a CUDA-based BFV implementation, denoted by BVMA[6].
The authors compare BVMA with Microsoft SEAL, a reference on the field with support for HPS-
BFV [12]; and NFLlib-FV, an equally important work implementing the BEHZ-BFV variant;
with impressive speedups on all scenarios [27]. Despite of their efforts for parallel computation,
the other libraries presented in that work are CPU-based implementations and thus show a sig-
nificant slowdown, up to 27 times, when compared to BVMA. Hence, we do not believe that the
direct comparison with spog is relevant to this paper.

2spog, acronym for “Secure Processing on GPGPUs”.
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Lastly, both works apply the DGT as the underlying solution to handle polynomial multipli-
cation. So, by comparing spog with them, we can collect evidence about the suitability of the
HDGT over the DGT for such task.

4.2 Execution environment, methodology, and BFV parameters
The experimental results presented in the next Sections for BPAVR or BVMA are those re-
ported by the authors in their corresponding publications. We do not re-execute the benchmarks
provided in the related work. This decision is based on the fact that the implementations and
benchmarking tools were not made available to the community. Because of that, we decided to
collect our measurements in a similar processing hardware adopted in the related works using
the same parameters.

We used Google Cloud’s virtual machines (VMs) for emulating the computational environ-
ment described in those works. Two instances were considered: gc.k80 and gc.v100 , which
provide a NVIDIA Tesla K80 GPU, used on BVMA measurements; and a NVIDIA Tesla V100
GPU, used on BPAVR. We precisely followed the execution environment described in each work,
running GCC 7.2.1 and CUDA 8.0 at gc.k80 ; and GCC 7.3.1 and CUDA 9.0 at gc.v100 . CUDA
events were used to measure execution time, following the common methodology from the liter-
ature.

Our benchmark targets the most relevant primitives for HE. Regarding BFV, implemented
in spog, we consider encryption, decryption, homomorphic addition, and homomorphic mul-
tiplication (including the relinearization cost). On the polynomial arithmetic side, implemented
in cuPoly, we focus on the performance gains caused by the replacement of the canonical DGT
by the HDGT.

In our measurements, we do not include initialization steps, which are performed only once
and have negligible effect on long term runs. Because of that, the latency for generating crypto-
graphic keys is not described in this work. Similarly, sampling is not explicitly considered in the
benchmarks, despite of being included in the timings for encryption.

Two different setups are considered for compatibility with each work, both choosing t = 256
for the plaintext domain.

BPAVR parameters: Different polynomial ring settings are used identified by the pairs (⌈log(q)⌉,
log(n)) ∈ {(60, 11), (60, 12), (120, 13), (360, 14), (600, 15)} for the ciphertext coefficient do-
main and the ring degree, respectively. These offer a security level of at least 128 bits [4].

BVMA parameters: Different polynomial ring settings are used identified by the pairs (⌈log(q)⌉,
log(n)) ∈ {(62, 11), (186, 12), (372, 13), (744, 14), (744, 15)} for the ciphertext coefficient
domain and the ring degree, respectively. These offer a security level of 80 bits [6].

4.3 Memory consumption
Let q̂ and b̂ be the main and auxiliary RNS bases used to represent elements of Rq and used by the
HPS-BFV methods described in Section 2.3, respectively; and nresqb the quantity of elements
in q̂ ∪ b̂. A BFV ciphertext on spog is composed by two N -degree polynomials represented as
nresqb residues with 63-bits coefficients, thus requiring s(N, nresqb) := 63 · (2 ·N · nresqb) bits
for storage.

The ciphertext expansion factor, however, depends also on its slot occupancy. Through
batching, a single ciphertext can store up to N integer plaintexts [11]. Hence, the expansion
factor is given by s(N,nresqb)

63·batch_size .
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4.4 SPOG operations
In Table 1 we compare spog with BVMA on gc.k80 , and with BPAVR on gc.v100 . As
mentioned in Section 4.1, The authors of BPAVR offer measurements for decryption and ho-
momorphic multiplication only, what inhibits the comparison with spog for encryption and
homomorphic addition.

One of the major motivations for using a FHE scheme is the applicability of its homomorphic
primitives, and because of that, we focus on improving the performance of these. As can be
seen, homomorphic multiplication, a critical and known expensive operation, reports speedup
between 2.0 and 3.6 times when compared to the BVMA. When compared to the BPAVR these
speedups lies between 2 and 2.4. The different characteristics between both setups, considering
the processing hardware and the cryptosystem parameters, makes the direct comparison between
both data sets impossible, however the performance gains are consistent.

Homomorphic addition, a much simpler operation, presented gains between 2 and 5.2 times
when compared to the BVMA. The latter is probably not related to the HDGT, since this
procedure is essentially a coefficient-wise addition, but to the better state machine, as described
in Section 3.3.

Despite our focus in this work does not being on encryption and decryption, the faster
polynomial multiplication strategy and the improved state machine offered up to 4.6 times faster
encryption and about 2 times faster decryption.

Table 1: Comparison between spog and two state-of-the-art implementations, BVMA
and BPAVR. Average running time of 100 independent executions, in milliseconds, for the
most relevant BFV operations for the setups described in Section 4.2.

gc.k80 gc.v100
log n 11 12 13 14 log n 12 13 14 15

spog 0.303 0.309 0.575 1.630 - - - - -
Encrypt BVMA 0.541 1.440 2.645 6.657 - - - - -

Ratio 1.785 4.660 4.600 4.084 - - - - -

spog 0.089 0.098 0.191 0.542 spog 0.029 0.031 0.049 0.099
Decrypt BVMA 0.151 0.194 0.252 0.610 BPAVR 0.054 0.059 0.087 0.111

Ratio 1.697 1.980 1.319 1.125 Ratio 1.862 1.903 1.776 1.121

spog 0.009 0.010 0.021 0.066 - - - - -
Hom. Add. BVMA 0.037 0.052 0.068 0.127 - - - - -

Ratio 4.111 5.200 3.238 1.924 - - - - -

spog 0.926 1.214 3.061 13.914 spog 0.423 0.472 0.823 2.325
Hom. Mul. BVMA 3.343 3.873 7.700 28.953 BPAVR 0.859 1.012 2.010 4.826

Ratio 3.610 3.190 2.516 2.081 Ratio 2.031 2.144 2.442 2.076

4.5 Efficiency of the HDGT
A major contribution of this work is the HDGT, a novel formulation of the DGT which better
explores the parallel capability of GPUs and compensate its memory limitations. However, a
carefully evaluation of its quality must be done to understand the performance gains on realistic
scenarios. Thus, at this Section, we provide a comparison between the HDGT and the best
implementation designs for the canonical DGT.

As discussed before, the HDGT works by splitting a high-degree polynomial, which does not
fit in the processing hardware, and applying the DGT in a divide-and-conquer approach through
blocks of arbitrarily small size. To evaluate this design, we implemented the canonical DGT
adopting two different strategies, namely DGT-I and DGT-II. The former uses a multi-kernel
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design which executes the loop synchronization employing a different CUDA kernel for each
iteration. This way, the transformation requires log n

2 kernels to process an n-degree polynomial.
The latter uses a single-kernel design, which is only compatible with polynomial rings with
degree smaller or equal than 4096 since these are the only that fit GPU’s shared memory. These
strategies are better described in Section 3.2. We verified the impact of this change in two
important procedures direct affected by the DGT, encryption and homomorphic multiplication.

Table 2 presents the latency measurements. The HDGT is about 2 times faster than the
DGT-I, which results in speedups ranging from 1.4 to 2.2 times on BFV’s primitives. The DGT-
II, though, presents a slowdown in most cases. This relates to the need for serialization within
HDGT’s steps, which was implemented by splitting the algorithm into 4 sequential kernels.
DGT-II is always executed by a single kernel, implying a much smaller overhead. This suggests
that the single-kernel design better accommodates smaller instances. Such effect doesn’t sustain
on gc.v100 that better handles the high-granularity of the HDGT. Unfortunately, DGT-II is not
scalable to bigger rings.

Table 2: Comparison between spog running the canonical DGT using a multi-kernel
and a single-kernel strategy, called DGT-I and DGT-II, respectively; and the HDGT. The
first row group compares the transform alone. Average running time of 100 independent
executions, in milliseconds, for the setups described in Section 4.2.

gc.k80 gc.v100
log n 11 12 13 14 15 11 12 13 14 15

DGT

HDGT 0.059 0.071 0.146 0.432 0.651 0.018 0.019 0.020 0.031 0.073

DGT-I 0.114 0.131 0.281 0.711 1.637 0.035 0.034 0.040 0.078 0.188
Ratio 1.934 1.864 1.925 1.644 2.517 1.934 1.815 2.040 2.487 2.593

DGT-II 0.052 0.091 - - - 0.026 0.047 - - -
Ratio 0.881 1.292 - - - 1.423 2.492 - - -

Encrypt

HDGT 0.303 0.309 0.575 1.630 3.127 0.103 0.098 0.099 0.153 0.315

DGT-I 0.571 0.499 0.861 2.597 5.835 0.144 0.146 0.159 0.287 0.704
Ratio 1.882 1.614 1.499 1.593 1.866 1.395 1.498 1.615 1.883 2.238

DGT-II 0.276 0.377 - - - 0.120 0.188 - - -
Ratio 0.910 1.220 - - - 1.163 1.921 - - -

HDGT 0.926 1.214 3.061 13.914 28.990 0.436 0.423 0.472 0.823 2.325

Hom. DGT-I 1.795 2.031 4.231 19.952 42.800 0.795 0.783 0.913 1.609 4.078
Mult. Ratio 1.938 1.673 1.382 1.434 1.476 1.825 1.850 1.934 1.956 1.754

DGT-II 0.642 0.983 - - - 0.362 0.466 - - -
Ratio 0.693 0.810 - - - 0.830 1.102 - - -

5 Conclusion
This work investigates strategies to achieve an efficient implementation of the leveled homomor-
phic encryption scheme BFV on the CUDA architecture. To fulfill this objective, we explored
different approaches for the utilization of the DGT in the reduction of the computational com-
plexity of polynomial multiplications. The outcome is an optimized version of the hierarchical
DGT, a high granularity implementation of DGT that better fits the GPU processing. Further-
more, the double-CRT concept is revisited and an efficient state machine is proposed so we can
avoid the costs to alternate between DGT and RNS domains, and between the machine’s main
memory and GPU’s memory.

Our implementation of BFV, named spog, is compared with two other works in the lit-
erature, BVMA and BPAVR, that represent the state-of-the-art implementations on CUDA.
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Homomorphic addition, in spite of being a simple and usually fast operation, presented speedups
between 2 and 5.2 times over the BVMA. Furthermore, spog’s homomorphic multiplication
showed itself between 2.0 and 3.6 times faster over the BVMA.

As future work, we intend to verify the gains of applying our methods on other relevant
RLWE-based cryptosystems such as the CKKS [13], and spog as a tool for the acceleration of
privacy-focused deep learning algorithms.
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A Properties of Gaussian integers
This Appendix presents important properties of Gaussian integers and useful results that can be
applied on their implementation. In the following, we recall some important properties stated
by Wuthrich that are useful to this work [30].

Definition 3 (Norm) The norm of a Gaussian integer is defined as its product with its conju-
gate3. That is, N(a+ ib) = (a+ ib) · (a− ib) = a2 + b2, so N(α) = α · α.

Proposition 1 (Wuthrich’s Proposition 5.7) For each prime number p ≡ 1 mod 4 there
are exactly two Gaussian primes π and π of norm p.

Lemma 1 (Wuthrich’s Lemma 5.4) If π ∈ Z[i] is such that N(π) is a prime number, then
π is a Gaussian prime.

Lemma 2 (Wuthrich’s Lemma 5.6) Let p be a prime number with p ≡ 1 mod 4. Then there
exists a Gaussian prime π such that p = π.π.

Lemma 3 (Wuthrich’s Lemma 5.10) Any prime p ≡ 1 mod 4 can be written as a sum of
two squares. This is a manifestation of Fermat’s theorem on sums of two squares.

From Lemma 2 and Proposition 1, if p is prime such that p ≡ 1 mod 4, then we know that it
can be factored as a product of exactly two Gaussian primes that are the conjugate of each other.
Lemma 3 is a direct consequence since we know that a prime p ≡ 1 mod 4 can be factored as
p = π · π and, assuming that π = a+ bi, we obtain that π · π = a2 + b2.

B Generating k-th primitive roots of i modulo p

The use of the DGT for polynomial multiplication in a cyclotomic polynomial ring requires the
computation of a k-th root of i modulo a prime p, discussed in Section 3.1. This element is used
for achieving a cyclotomic polynomial reduction for free when n is a power of two. When p is
a Mersenne prime, the literature presents efficient analytic methods; for other choices of p, the
best option still is a trial-and-error approach.

Badawi et al.state that a naive implementation of such approach takes 156 hours to find a
214-th primitive root of i for p = 264− 232 +1 [5]. Because of that, they propose a more efficient
strategy, when p ≡ 1 mod 4, by factoring p in two Gaussian primes, namely f0 and f1. This
decomposition of p is quite simple and relies on Lemma 2 and Proposition 1.

3Let x = a+ ib be a Gaussian integer. If y is x’s conjugate then y = a− ib.
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Algorithm 6: decompose_in_gaussian_primes: Decomposes a prime.
Input: A prime p
Output: Gaussian integers f0 and f1 such that f0 · f1 = p

1 do
2 n = sample(Zp)

3 while n(p−1)/2 ̸≡ −1 mod p

4 k = n(p−1)/4 mod p
5 u = gcd(p, k + i)
6 return (f0, f1) = (u, u)

Algorithm 6 starts from the Fermat’s Little Theorem, which states that if p is a prime then
np−1 ≡ 1 mod p for all n ∈ Zp. Hence, the square root of that must be equivalent to either 1
or −1. In the latter case, we can find a number k2 such that k ≡ n(p−1)/4 ≡ i mod p. In other
words, if k2 ≡ −1 mod p then k2 + 1 ≡ 0 mod p and p divides k2 + 1. Since k2 + 1 factors in
(k + i) · (k − i), we found a factorization of p.

At this point, there is no guarantee that k + i is a Gaussian prime. By Lemma 4, we find
that the greatest common divisor of p and k + i is either k + i or that there exists some u such
that u | p and u | k + i. Thus, since u = gcd(p, k + i) results in a Gaussian prime, we take it as
the first factor of p. From Lemma 2, u is the second factor.

Lemma 4 Let p be an odd prime such that p ≡ 1 mod 4 and k ∈ Zp. The greatest common
divisor of p and k + i is k + i or a Gaussian prime u such that u | p and u | k + i.

Proof 1 By the Fermat’s theorem on sums of two squares, we have that an odd prime p can
be expressed as p = x2 + y2, with x, y ∈ Z, if, and only if, p ≡ 1 mod 4. Since x2 + y2 =
(x + iy)(x − iy) and N(x + iy) = N(x − iy) = p, then x + iy and x − iy are Gaussian primes
and p = (x+ iy)(x− iy) is the unique factorization of p in Z[i], not considering the order of the
factors4.

On the other hand, we have that (k + i)(k − i) ≡ p mod p, by construction. Combining
the two facts, we obtain that p = (x + iy)(x − iy) ≡ (k + i)(k − i), which is equivalent to
(k + i)(k − i) = ℓ(x+ iy)(x− iy), for some ℓ ∈ Z.

When ℓ = 1, we have an equality and we find that (k + i) and (k − i) are indeed the factors
of p. When ℓ ̸= 1, (k + i) is not a Gaussian prime and still can be factored in Z[i]; otherwise,
it would be a factor of p. We know that p divides (k + i)(k − i) but not k + i, or its conjugate,
since k < p and (k + i)/p is not a Gaussian integer. Then, k + i and p must share a common
factor u that can be found as the greatest common divisor. Since the two factors of p are x+ iy
and x+ iy, u must be one of them.

Finally, the factors of p can be found by computing the greatest common divisor of p and k+ i
and then computing its conjugate. Since p = x2 + y2 and N(x+ iy) = N(x− iy) = x2 + y2, by
Lemma 1, the factors are Gaussian primes.

Given a method for factoring a prime number p ≡ 1 mod 4 in Z[i], Badawi et al.propose
Algorithm 7, which makes much faster the step of precomputing a k-th root of i for a prime
p ≡ 1 mod 4 [5]. The method starts by finding the factorization p = f0 · f1 ∈ Zp[i] using the
Algorithm 6. Thus, we have that each Gaussian prime fj , with j = {0, 1}, defines a cyclic
group corresponding to the set of Gaussian integers modulo fj . Then, a k-th root of i modulo

p, denoted as h, is constructed via CRT using that hj = ζ
(p−1)
4n

j mod fj , with j = {0, 1}, where
ζj is a generator for the cyclic group j.

4Wuthrich proves in Theorem 5.8 that every 0 ̸= α ∈ Z[i] has a unique factorization [30].
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Algorithm 7: Compute the k-th primitive root of i mod p, for a prime number
p ≡ 1 mod 4.
Input: An integer k and a prime p ≡ 1 mod 4.
Output: The k-th primitive root of i mod p.

1 f0, f1 = decompose_in_gaussian_primes(p)
2 while True do
3 for j = 0; j < 2; j = j + 1 do
4 ζj = sample_generator(fj); hj = ζ

⌊(p−1)/(4k)⌋
j mod fj

5 h = f1 ·
(
f−11 · h0 mod f0

)
+ f0 ·

(
f−10 · h1 mod f1

)
mod p

6 if hk ≡ i mod p then
7 return h
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2.3 Efficient polynomial multiplication on GPUs

The work presented in Section 2.2 was followed by questions from the community regarding
the lack of a formal investigation of the real benefits of the DGT over the NTT. Aiming
that, we proposed a methodology to evaluate the advantage of each on different scenarios
when running on GPUs.

This publication is entitled “Performance of Hierarchical Transforms in Homomor-
phic Encryption” and is under reviewing in the Journal of Cryptographic Engineer-
ing.
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Abstract

Recent works challenged the Number-Theoretic Transform (NTT) as the most
efficient method for polynomial multiplication in GPU implementations of Fully
Homomorphic Encryption schemes such as CKKS and BFV. In particular, these
works argue that the Discrete Galois Transform (DGT) is a better candidate for
this particular case. However, these claims were never rigorously validated, and
only intuition was used to argue in favor of each transform. This work brings some
light on the discussion by developing similar CUDA implementations of the CKKS
cryptosystem, differing only in the underlying transform and related data structure.
We ran several experiments and collected performance metrics in different contexts,
ranging from the basic direct comparison between the transforms to measuring the
impact of each one on the inference phase of the logistic regression algorithm. Our
observations suggest that, despite some specific polynomial ring configurations, the
DGT in a standalone implementation does not offer the same performance as the
NTT. However, when we consider the entire cryptosystem, we noticed that the effects
of the higher arithmetic density of the DGT on other parts of the implementation
is substantial, implying a considerable performance improvement of up to 15% on
the homomorphic multiplication. Furthermore, this speedup is consistent when we
consider a more complex application, indicating that the DGT suits better the target
architecture.

Keywords— NTT, DGT, Fully Homomorphic Encryption, CKKS, CUDA, Polynomial mul-
tiplication, Privacy-preserving computing

1 Introduction
In 1978, Rivest et al. first conceived the notion of Homomorphic Encryption (HE) schemes [41].
Their objective was to preserve some mathematical structure after encryption that enables the
evaluation of arithmetic circuits over ciphertexts without decryption or knowledge of the secret

Results were partially obtained while visiting the Department of Computer Science at Aarhus Uni-
versity.
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key. The computation outcome is naturally encrypted, and an observer learns nothing regarding
the operands, the result, or the decryption key. The first HE schemes had limited capability,
supporting only additions or multiplications, and because of that they were called Partially
Homomorphic Encryption (PHE) schemes. ElGamal’s and Paillier’s are notorious examples
of such PHE schemes [24, 37]. Since they cannot support both operations simultaneously, their
suitability to real-world implementations is limited. It took around 30 years after this initial work
for the first practical construction of a Fully Homomorphic Encryption (FHE) scheme supporting
an unlimited number of both operations to be introduced [26]. Unfortunately, the first proposals
did not stand out for performance regarding latency or memory consumption. Still, Gentry was
successful in drawing a blueprint that has guided many FHE schemes. His main contribution [26]
was the proposal of a bootstrapping operation that homomorphically evaluates the decryption
procedure to remove the upper bound on the complexity of supported functions. The following
decade was dedicated to security and performance improvements [27, 13, 12, 34, 22, 15, 14].

Modern schemes have significantly reduced the performance overhead imposed on computa-
tion over ciphertexts [23, 16]. Their implementation relies on polynomial arithmetic, so develop-
ers have to find efficient ways to handle known costly operators, such as polynomial multiplication
and division. Concerning the former, the literature has established the suitability of the Number-
Theoretic Transform (NTT), a variant of the Discrete Fourier Transform (DFT) that operates
over integers, to compute the polynomial multiplication with linear complexity within the trans-
form domain. Nonetheless, some recent works suggest that the Discrete Galois Transform (DGT)
may be a better candidate when the target hardware is a CUDA-enabled GPU [2, 6, 4]. CUDA
is a SIMD architecture developed and maintained by NVIDIA to employ GPUs’ potential for
data parallelism in tasks beyond graphical processing. In particular, the suitability of current
devices for polynomial arithmetic made CUDA an essential tool for the efficient implementation
of FHE schemes [21, 32].

However, the particularities of the architecture impose some challenges. For example, its
processing flow demands careful planning to align possible conditional branches with certain
thread groups, and its memory paradigm considers several structures with different dimensions
and latency characteristics, apart from the machine’s main memory. So, part of the difficulty of
its use involves tailoring classical methods into variants that conveniently fit the GPU.

1.1 Related Work
Current HE schemes are built on top of Gentry’s proposal of a bootstrappable cryptosystem, a
scheme that homomorphically evaluates its own decryption circuit [26]. The bootstrap procedure
enables these proposals to be used as fully homomorphic since they can perform an unlimited
number of additions and multiplications. Some of the primary schemes available in the literature
are BFV [22], CKKS [14], and TFHE [15]. All these schemes share a common core for polynomial
arithmetic, which allows using a DFT-based method to accelerate polynomial multiplication. For
this task, one may use the Fast Fourier Transform (FFT), the NTT, or the DGT. In particular,
we target the application of these methods to the implementation of CKKS on GPUs.

The applicability of DFT-based algorithms to efficiently implement polynomial multiplica-
tion is ubiquitous in the FHE literature. In 1966, Gentleman and Sande [25] proposed the
hierarchical FTT, and it remained forgotten in the interim until 1989 when Bailey rediscovered
it as the “four-step” FFT algorithm [7]. Later on, in 2008, Govindaraju et al. implemented the
four-step hierarchical FFT in the context of GPUs [28]. A few years later, Harvey developed
arithmetic techniques for reducing the number of reductions modulo p during the computation
of the NTT [30]. The NTT is a DFT variant that works in a finite field, so its arithmetic better
suits cryptographic contexts, avoiding the use of floating-point arithmetic that is inherent to the
FFT. Because of that, the NTT became the norm in the literature. In 2018, Dai et al. recur-
sively applied the four-step Cooley-Tukey algorithm [17] to obtain NTTs with size 64 instead of
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performing the transform on integer vectors of 2048 and 4096 coordinates [20]. Recently, Jung et
al. applied a hierarchical implementation of the NTT in the fastest up-to-date implementation of
logistic regression over GPUs [31]. Following a slightly different branch, Badawi et al. explored
the suitability of the DGT for FHE [2]. The DGT works in the finite field Fp2 for prime p. Thus,
it is similar to the NTT but also adds the possibility of halving the operands’ degree. In this same
direction, the DGT was used to accelerate polynomial multiplication on a BFV implementation
on GPUs [6], and lately, Alves et al. improved the use of the DGT for polynomial multiplication
in GPUs through a hierarchical implementation [4].

The DGT is favored by the fact that arithmetic in the field Fp2 is performed in the set of
Gaussian integers Zp[i], for some convenient choice of prime p. By working with Gaussian inte-
gers, the operands are converted from a N -degree to a N/2-degree polynomial ring via a folding
procedure. Consequently, the degree of the inputs used inside the transform is halved and so
is the number of roots that will be loaded and stored into memory during the transform com-
putation. Moreover, a CUDA implementation can also reduce the number of required threads,
which avoids the parallel performance degradation in bigger instances [2, 6]. Nevertheless, the
representation in Zp[i] implies denser arithmetic operations, which saves in memory bandwidth
consumption. Notice that arithmetic in Fp consists in coefficient-wise operations modulo p be-
tween two N -degree polynomials. On the other hand, when the base field is Fp2 , addition and
multiplication operations are similar to the ones over complex numbers. This means that an
increased arithmetic density is natural to the DGT and may improve performance if the imple-
mentation explores the processing hardware special capabilities.

1.2 Our contributions
In this paper, we describe our efforts to resume the investigation started by Badawi et al. on the
possible advantages of replacing the NTT with the DGT for the implementation of polynomial
multiplication in FHE cryptosystems [2]. In particular, we target results claiming that the DGT
is more suitable than NTT for GPUs and memory-bounded platforms [5]. To the best of our
knowledge, no previous work provided a deep analysis of the advantages of each transform in the
context of GPU execution.

We developed two implementations of the CKKS scheme using DGT and NTT as the un-
derlying transform to perform multiplication in the ring Zq[x]/(x

N + 1). The implementations
are referred to as AOA-DGT and AOA-NTT, respectively. We compare the latencies of the
transforms executed independently and also within CKKS’ homomorphic primitives. Moreover,
we present a case study verifying how the performance of the logistic regression inference is
affected by each. For that, we compute the inference score using both implementations for a
trained model over the MNIST database considering the case when the model is encrypted, pro-
tecting its secrecy, and when it is handled as plaintext [33]. Furthermore, we analyze how the
problem scales for approaches found in the literature that run the inference with and without
the computation of the activation function.

Our experiments reveal that the NTT offers a clear performance advantage over the DGT in
most cases and especially in smaller instances. For 8192-degree polynomial rings, however, the
DGT more efficiently takes advantage of the processing hardware and can overcome the NTT.

Nonetheless, the AOA-DGT’s homomorphic multiplication performs better even though its
related transform implementation does not. We found procedures in the critical path of that
primitive not directly related to the transform itself but that are impacted by the associated
implementation decisions. For instance, a 10% slowdown on the Logistic Regression inference
executed on AOA-NTT is observed, caused by the less efficient basis extension methods. We
show that this result can be reversed by increasing arithmetic density in AOA-NTT to match
the one in AOA-DGT.
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Organization This document is organized as follows. Section 2 describes the adopted nota-
tion and relevant basic building blocks at Sections 2.2 and 2.4; and the target FHE scheme, at
Section 2.3. Section 3 presents our experiments and methodology, and discusses the obtained
results. Furthermore, Section 4 presents a case study on how the selection of each transform
affects the performance on the inference of a homomorphic logistic regression implementation.

2 Background
Most implementations of cryptosystems based on the Ring Learning-With-Errors (RLWE) prob-
lem requires the construction of basic building blocks that offer polynomial arithmetic on a
cyclotomic ring. An example is the cryptosystem CKKS [14], a leveled homomorphic encryp-
tion scheme. In particular, the implementation of algorithms for polynomial multiplication has
been a challenging task. A simple schoolbook algorithm requires quadratic complexity on the
operands degree, and because of that it is utterly unsuitable on instances of cryptographic size.
The typical approach in the literature involves variants of the DFT, which offer linear complexity
when the operands lie in their domains. In this work, we focus on the efficient implementation
of the NTT and DGT.

In this context, this section describes the notation used throughout the document, defines
the relevant primitives of CKKS, and discusses formulations for the NTT and the DGT.

2.1 Notation
We use bold letters to denote vectors e.g., a and A. For a vector a, we refer by ai the i-th
element. We denote by [x]q the reduction of an integer x modulo q, that is, [x]q := x mod q,
for some integer q. Furthermore, let X be a matrix, then x∗,i is the set of all the elements on
column i of X. In the same way, xi,∗ is the set of all the elements on row i of X. Also, we use
⌊x⌉ to define the rounding to the nearest integer operation.

Let K be the 2N -th cyclotomic number field and R = OK its ring of integers. We represent
R in its polynomial form, that is, R = Z[x]/(xN +1). Moreover, for an integer q ≥ 2, Rq denotes
the quotient ring Rq = Zq[x]/(x

N + 1).
Consider that C = {q0, q1, . . . , qℓ} is a set of coprime integers and q = Πℓ

i=0qi. If s ∈ RC ,
then ∃S ∈ Rq such that s := {[S]q0 , [S]q1 , . . . , [S]qℓ}. Arithmetic operations as addition and
multiplication over elements in RC are taken coefficient-wise, that is, if a, b ∈ RC then a + b ={
[a0 + b0]q0 , . . . , [aℓ + bℓ]qℓ

}
. Furthermore, we denote by [x]q0 the operation that selects the 0-th

residue of x.

2.2 DFT-based Transforms
NTT is a variation of the DFT that replaces the primitive N -th complex root of unity by a
primitive N -th root of unity ωN in a ring Zp [40]. For N a power of two, the NTT requires p to
be a prime number and that N | (p−1). In this case, Pollard proved that there exists a primitive
N -th root of unity in Zp that can be computed as r(p−1)/N , where r is the primitive root modulo

p. For a polynomial a(x) =
N−1∑
j=0

ajx
j ∈ Z[x], the N -point NTT computes

NTTωN (a(x)) =
(
a(ω0

N ), . . . , a(ωN−1
N )

)
. (1)

Conversely, the inverse transform is

INTTω−1
N
(a(x)) =

[
N−1 ·NTTω−1

N
(a(x))

]
p
, (2)
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where N−1 is the multiplicative inverse of N modulo p. The polynomial multiplication c(x) =
a(x) · b(x) mod xN + 1 can be done via NTT as

c(x) =

ω−12N · INTTω−1
N
(NTTωN â(x))⊙NTTωN (b̂(x))),

in which â(x) = ω2N · a(x). This technique of scaling the operands by powers of ω2N is known
as the negative wrapped convolution [35].

DGT is an alternative to the NTT over the finite field Fp2 , where p is a prime. It was
presented as a method for integer convolution by Crandall [18] and was further considered for
polynomial multiplication by Badawi et al. [6]. The DGT and its inverse transform are defined
in the same way as NTT in Equations 1 and 2, but now the operands are vectors with elements
in Fp2 .

In this context, the field elements may be represented using the set of Gaussian integers
modulo p, denoted Zp[i], which is defined as Zp[i] = {a+ ib | a, b ∈ Zp}, for i =

√
−1. The

arithmetic in Zp[i] is similar to the one in C but both real (ℜ) and imaginary (ℑ) parts are taken
modulo p. When the polynomial ring is Z[x]/(xN + 1), Crandall [18] defines a transform on a
vector a with size N ≡ 0 mod 2 to a vector A with size N/2, denoted as folding, such that

Aj = aj + iaj+N
2
∈ Zp[i].

This transform maps the coefficients of the polynomial from ZN
p to Zp[i]

N
2 . The inverse transform

from Zp[i]
N
2 to ZN

p is denoted as unfolding and it is given by

aj = ℜ(Aj) and aj+N
2
= ℑ(Aj),

for 0 ≤ j ≤ N/2−1. Crandall [18] also defines a “right-angle” convolution that multiplies the
folded vector A by powers of τ = τN

2
, an N

2 -th root of i modulo p. We refer to this convolution
as twisting, since powers of τ are the twisting factors defined as

Aj = Aj · τ j .

The corresponding inverse convolution is given by the multiplication of the vector a, which is
the output of the unfolding procedure, by growing powers of the inverse N

2 -th root of i, denoted
τ−1.

For completeness, we present the polynomial multiplication in the ring Zp[x]/(x
N + 1) via

DGT introduced by Badawi et al. [6] in Algorithm 1. Notice that it operates on the coefficient
vectors a and b of two polynomials a(x), b(x) ∈ Zp[x]/(x

N +1). Similarly, the algorithm outputs
the coefficient vector c corresponding to the computation c(x) = a(x) · b(x) ∈ Zp[x]/(x

N + 1).

2.3 CKKS Scheme
Cheon-Kim-Kim-Song proposed a leveled homomorphic encryption scheme known as CKKS [14]
in which the plaintext domain is composed of complex numbers. The array of complex numbers
is mapped into elements of the ring R using an encoding method that works as follows.

Let z be a vector of N complex numbers and ∆ a scalar. In practice, we have that decode(z) =
⌊FFT(z) · ∆−1⌉. In this sense, encode is defined simply as the inverse procedure. Through
this approach, CKKS becomes capable of operating with non-integer numbers using fixed-point
arithmetic. In this representation, ∆ is called the scaling factor and is responsible for setting its
precision.

A CKKS ciphertext, denoted ct = (c0, c1), is a pair of elements in RC , for C = {q0, . . . , qL}
a RNS basis. In other words, ct = {(c(i)0 , c

(i)
1 )}0≤i≤L such that (c

(i)
0 , c

(i)
1 ) ∈ Rqi × Rqi . At this
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Algorithm 1 Polynomial multiplication in Zp[x]/(x
N + 1) via DGT

Require: Vectors a,b ∈ ZN
p , p a prime number, N a power-of-two integer, and τ a

primitive N
2
-th root of i modulo p.

Ensure: A coefficient vector c ∈ ZN
p .

for j = 0; j < N/2; j = j + 1 do
a′j = aj + iaj+N/2

b′j = bj + ibj+N/2

end for
for j = 0; j < N/2; j = j + 1 do

a′j = τ j · a′j (mod p)
b′j = τ j · b′j (mod p)

end for
a′ = DGT(a′)
b′ = DGT(b′)
for j = 0; j < N/2; j = j + 1 do

c′j = a′j · b′j (mod p)
end for
c′ = IDGT(c′)
for j = 0; j < N/2; j = j + 1 do

aux = τ−j · c′j (mod p)
cj = ℜ(aux)
cj+N

2
= ℑ(aux)

end for
return c
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moment, we say that this ciphertext has level ℓ = L + 1. We have that c0 and c1 are built by
the CKKS encryption algorithm such that [c0 + s · c1]q0 ≈ m, for a secret key s.

A decryption imprecision is expected, and its error is considered part of the cryptosystem’s
inherent noise. Let ct0 = (ct0,0, ct0,1) and ct1 = (ct1,0, ct1,1) be encryptions of m0 and m1 under
a secret key s, respectively. Then, m0 ·m1 ≈ [(ct0,0 + s · ct0,1) · (ct1,0 + s · ct1,1)]q0 . Therefore,
the property that is expected to be conserved to offer homomorphic multiplication is

m2 = m0 ·m1 ≈ [ct0,0 · ct1,0
+ s · (ct0,1 · ct1,0 + ct1,1 · ct0,0)
+ s2 · ct0,1 · ct1,1

]
q0
.

The problem with this construction is that the outcome of a ciphertext multiplication would
be a ciphertext composed of three parts, which are the coefficients of powers of s. This is
not desirable for storage efficiency, and can also become a significant computational problem
for following homomorphic operations, especially for homomorphic multiplications. Thus, a
procedure to recover the ciphertext’s linearity, i.e. write it as a linear combination of {1, s}, is
crucial in this context.

The relinearization procedure for this scheme extends the polynomial representation of the
quadratic coefficient from an element of RC to an element of RC+D, for a secondary basis D =
{p0, p1, . . . , pk} coprime to C. A multiplication by an evaluation key, evk, is done in this bigger
basis, and then the representation is shrank back to the basis C. These basis conversion steps are
done through approximate modulus switching functions referred to as ModUp and ModDown.

Bajard et al. [8] define a fast basis extension procedure from C to D as follows:

ConvC→D(a) =






ℓ−1∑

j=0

[a(j) · q̂−1j ]qj · q̂j



pi




0≤i≤k

where q̂j =
∏

j′ ̸=j qj′ . This procedure can be used for ModUp, computing the approximated
representation of a in a bigger basis. This approximation, in the context of the CKKS, is close
enough to add negligible noise to the cryptosystem.

The inverse procedure, ModDown, aims at computing b ≈ P−1 · b̃ ∈ ZC for P =
∏

p∈D p,
given as input the representation b̃ ∈ ZC+D.

ModDownC+D→C
({

b̃C , b̃D
})

=
(
P−1 ·

(
b̃
(j)
C − ConvD→C(b̃D)(j)

))
0≤j≤ℓ

.

Notice that, after a homomorphic multiplication, the encoding scaling factor of the outcome
is ∆2. For maintaining the representation precision, CKKS uses a rescaling method to restore
the original scaling factor (or an approximation of it). In this sense, one of the residues used to
represent the ciphertext is consumed, leading to a ℓ′ = (ℓ− 1)-level ciphertext. When ℓ′ = 0, no
further rescaling is possible.

Let χkey be a secret key distribution, and χerr an encryption key distribution over the
ring R. In practice, χkey is usually defined as a narrow distribution, sampling uniformly from
{−1, 0, 1}, and χerr is taken as a discrete Gaussian. Also, let C = {q0, q1, . . . , qL} and D =
{qL+1, qL2 , . . . , qL+k} be two RNS basis coprime to each other. In the following we define some
primitives relevant for this work:

• CKKS.SecKeyGen(1λ): Sample s←$ χkey and set the secret key as sk := (1, s).

• CKKS.PubKeyGen(sk): Sample
(
a(0), . . . , a(L)

)
←$ RC and e ←$ χerr. Set the public

key as pk :=
(
pk(j) = (−a(j) · s+ e mod qj , a

(j))0≤j≤L
)
.
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• CKKS.RelinKeyGen(sk): Sample
(
a(0), . . . , a(k+L)

)
←$ RC⋃B and e ←$ χerr. Let

b(j) := −a(j) · s +
[∏k−1

i=0 pi

]
gj

+ e mod gj , for gj ∈ C
⋃B. Set the relinearization key

rlk :=
(
rlk(j) = (b(j), a(j))

)
0≤j≤L

.

• CKKS.Encrypt(m, pk): For m ∈ RC , sample v ←$ χenc and e0, e1 ←$ χerr. Output the

ciphertext ct :=
(
c(j) =

[
v · pk(j) + (m+ e0, e1)

]
qj

)

0≤j≤L

• CKKS.Decrypt(ct, sk): Output [ct · sk]q0 .

• CKKS.Add(ca, cb): Let ca = (a
(j)
0 , a

(j)
1 ) and cb = (b

(j)
0 , b

(j)
1 ) for j ∈ {0, . . . , L}. Output

([a
(j)
0 + b

(j)
0 ]qj , [a

(j)
1 + b

(j)
1 ]qj )0≤j≤L

• CKKS.DR2(ca, cb): Let ca = (a
(j)
0 , a

(j)
1 ) and cb = (b

(j)
0 , b

(j)
1 ). Output

(
d
(j)
0 , d

(j)
1 , d

(j)
2

)
=

(
a
(j)
0 b

(j)
0 , a

(j)
0 b

(j)
1 + a

(j)
1 b

(j)
0 , a

(j)
1 b

(j)
1

)
∈ R3

qj , for j ∈ {0, . . . , L}.

• CKKS.Mul(ca, cb): Let ca = (a
(j)
0 , a

(j)
1 ) and cb = (b

(j)
0 , b

(j)
1 ).

1.
(
d
(j)
0 , d

(j)
1 , d

(j)
2

)
= CKKS.DR2(ca, cb),

2. Having the representation of d2 in base C, compute its representation in base D:
d̃2 := ModUpCℓ←Dℓ

(d2)

3. c̃t
(j)

:= d̃2
(j) · evk(j) mod qj for qj ∈ C +D.

4. Having c̃t
(j) in base C +D, compute its representation in base C:

ĉ(j) := ModDownDℓ←Cℓ(c̃t
(j)

)

5. Output
(
ĉ
(j)
0 + d

(j)
0 , ĉ

(j)
1 + d

(j)
1

)
0≤j≤L

.

• CKKS.Rescale(ca): Let a ℓ-level ciphertext ca = (a
(j)
0 , a

(j)
1 ) for j ∈ {0, . . . , ℓ}. Compute

cb := q−1ℓ ·
(
a
(j)
0 − aℓ0, a

(j)
1 − aℓ1

)
0≤j≤ℓ−1

. The result, cb, is a (ℓ− 1)-level ciphertext.

• CKKS.AddPlain(c, p): Let c = (a(j), b(j)) be a ℓ-level ciphertext and p ∈ RC a plaintext,
for j ∈ {0, . . . , ℓ}. Output (a(j) + p(j), b(j))0≤j≤L ∈ RC

• CKKS.MulPlain(c, p): Let c = (a(j), b(j)) be a ℓ-level ciphertext and p ∈ RC a plaintext,
for j ∈ {0, . . . , ℓ}. Output (a(j)p(j), b(j)p(j))0≤j≤L ∈ RC .

2.4 Hierarchical Transforms
The memory paradigm of GPUs involves different layers that should be considered prior to the
computation. Usually, the processing workflow starts with the data copy from the machine’s
main memory to the GPU global memory, which is the largest but also slowest memory space
accessible by CUDA threads. Thus, before computation really starts, data needs to be copied
from the global memory to a faster memory. Each CUDA thread is member of a three-dimensional
block of threads, which shares a fast but small memory space, called shared memory. By doing
that, the performance is considerably increased. Yet, this also imposes a constraint on the space
consumption.

As discussed by Alves et al., the implementation of the DGT or NTT in memory-constrained
devices, such as GPUs, is not straightforward [4]. The synchronization calls needed by these
algorithms limits the dimension of the input to the size of a block of threads, or requires the
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use of a software-based mechanism like Cooperative Threads. To avoid such issue, a hierarchical
strategy can be adopted to reduce the size of the transforms to a feasible dimension, which can
be easily supported by the processing hardware. Originally proposed by Bailey and revisited
by Govindaraju et al. for the FFT, the idea is to split the input polynomial, of degree N , into
smaller instances as close as to

√
N [7, 28].

We present a general description of a forward hierarchical transform, which in our case is
either the hierarchical NTT or hierarchical DGT. The forward hierarchical transform is done by
executing the following four steps on an N -length integer vector a. We also consider that the
arithmetic operations are taken modulo a prime number p. When dealing with the hierarchical
NTT transform, we require that p ≡ 1 (mod 2N). But, when the transform is the DGT, we
require that p ≡ 1 (mod 4N) in order to the N

2 -th primitive root of i exist modulo p.

1. Apply the weight corresponding to either NTT or DGT to the operand a. When the
NTT is the transform, the weight is the negative wrapped convolution, which multiplies
the coefficients of a by powers of the 2N -th primitive root of unity modulo p. When
the transform is the DGT, the weight consists of folding the input vector followed by a
multiplication by powers of the N/2-th primitive root of i modulo p, denoted h (mod p).
Despite the transform, the result of this step is assumed to be an N ′-length vector.

2. By treating a as an Nr × Nc-matrix, denoted A, perform Nc simultaneous Nr-length
transforms on each column of A.

3. Apply the twisting factor g, which is the N ′-th primitive root of unity modulo p, to a by
multiplying each element Ai,j by gi·j (mod p).

4. Finally, perform Nr simultaneous Nc-length transforms on each row of A.

We summarize the basic steps of a forward hierarchical transform in Algorithm 2. Notice that
Aj denotes the j-th column of the matrix A. The inverse hierarchical transform is obtained by
executing the above four steps in reversed order. This is done by replacing the forward transform
in steps 2 and 4 with their inverse counterparts and substituting the primitive roots in steps 1
and 3 by their inverse modulo p.

Algorithm 2 Hierarchical forward transform
Require: An N -length integer vector a.
Ensure: The operand A in the hierarchical transform domain.
a = ApplyWeight(a)
for j = 0; j < Nc; j = j + 1 do

Aj = PerformForwardTransform(Aj)
end for
A = ApplyTwiddleFactor(A)
A = TransposeMatrix(A)
for i = 0; i < Nr; i = i+ 1 do

Ai = PerformForwardTransform(Ai)
end for
return A

Consider that we want to perform the polynomial multiplication c(x) = a(x) · b(x) ∈
Z[x]/(xN + 1) by adopting the hierarchical transforms. We consider that a and b contain
the coefficients of the integer polynomials a(x) and b(x), respectively. Thus, the polynomial
multiplication is done by executing the four-step algorithm into both a and b, by computing
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the component-wise multiplication on the operands, and by finally computing the inverse hier-
archical transform. As a result, we obtain c, which holds the coefficients of the polynomial c(x).
Notice that, in the NTT domain, the component-wise multiplication is performed in Zp. On the
other hand, in the DGT domain, the product is performed in Zp[i] using arithmetic similar to
performed over complex numbers.

3 Performance Evaluation of Hierarchical Transforms
This work investigates whether the DGT outperforms the NTT in its hierarchical form as a
mechanism to accelerate the CKKS arithmetic in the CUDA architecture. The main differences
between them are the input folding and the field arithmetic of the DGT, which is more expensive
than in the NTT. However, doing arithmetic operations in F(p2) instead of F(p) offers a higher
computational density. These characteristics may improve performance if they use the processing
hardware more efficiently. To examine this hypothesis, we conceived two CUDA-based imple-
mentations of CKKS using the hierarchical versions of both DGT and NTT, which we refer to as
AOA-DGT and AOA-NTT. Both follow the same design decisions, except for their basic data
type.

We represent a polynomial as a single array by concatenating its residues. In AOA-NTT, the
coefficients are stored as 64-bit unsigned integers, and in AOA-DGT we use a structure composed
of two of those. All other implementation decisions follow Alves et al.’s blueprint, as the use
of the double-CRT representation, encapsulating data simultaneously in the RNS representation
and within the transform domain; and the GPU-optimized state machine, avoiding data move
between memories and the transform domain [4].

Let C = {q0, . . . , qL} and D = {qL+1, . . . , qL+k} be the main and secondary RNS basis, as
defined in Section 2.3. All time measurements were obtained with a 63-bit prime q0, and 52-bit
primes qi, for i > 0, fixing the scaling factor at 252. We selected this scaling factor aiming the
required precision to execute the logistic regression inference, described at Section 4.

We collected time measurements of both implementations in two distinct scenarios, comparing
the transforms as a standalone but also as part of more complex algorithms. The implementations
were analyzed using NVIDIA’s recommended profiling tool, namely NVIDIA Nsight Systems
version 2021.2.1.2 [36]. All executions were performed on a Google cloud instance and the code
was compiled using GCC and G++ 8.4.0, and CUDA 11.3. Experiments were executed on either
NVIDIA Tesla V100 or Tesla A100 GPUs.

3.1 Direct Comparison: DGT versus NTT
Following the hierarchical strategy, presented in Section 2.4, N -degree polynomials are processed
as Nr or Nc-degree, such that N = Nr ·Nc. Thus, we need Nc blocks of ⌈Nr/2⌉ threads each to
compute step 2 of the algorithm, and then Nr blocks of ⌈Nc/2⌉ threads for step 4.

The effect of the hierarchical approach can be observed in rings with degrees 4096 and
8192. Table 1 shows execution times for computing the DGT and the NTT on these instances
represented in different RNS bases, which offer the best and the worst performance for the DGT
compared to the NTT, respectively. As it can be seen in the table, DGT exhibits a consistent
slowdown in the smaller instance. Due to DGT’s folding procedure, 4096-degree polynomials
are folded into 2048-degree polynomials with Gaussian integer coefficients. Since 2048 can be
written as 64 ·32, it means that there will be blocks with 32/2 = 16 threads running in the GPU.

Modern GPUs’ streaming multiprocessors (SMs) process groups of 32 threads at a time,
called warps, which are the primary processing unit in a GPU. In this sense, 16-thread blocks
are too small and do not reach the CUDA warp size. Since warps are only composed of threads
contained in the same block, blocks smaller than 32 imply that SM resources are being wasted,
explaining the performance observed on instances of the DGT with a size smaller or equal to 32.
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Table 1: Latencies for the computation of the DGT and NTT on their hierarchical for-
mulation on 4096- and 8192-degree polynomials represented in RNS bases composed of r
elements. Measurements in microseconds were computed as the average of 100 indepen-
dent executions on an NVIDIA Tesla V100 GPU.

N = 4096
r 1 5 10 20 30 40 50

DGT 16.2 17.1 18.4 24.7 32.6 39.6 48.4
NTT 13.4 14.3 17.0 22.0 28.5 35.2 43.1
Ratio 1.21 1.20 1.08 1.12 1.14 1.13 1.12

N = 8192
r 1 5 10 20 30 40 50

DGT 17.7 18.9 23.0 35.0 47.8 60.4 77.0
NTT 14.2 17.2 23.5 36.9 52.2 64.3 76.4
Ratio 1.25 1.10 0.98 0.95 0.92 0.94 1.01

In comparison with NTT that does not use folding, the operands are processed as 4096-degree
polynomials. Thus, 4096 = 64 · 64, and all blocks are set with 32 threads, fitting in a warp
perfectly. For N = 8192, the opposite happens, and the DGT benefits from the SM processing.
In this case, some NTT thread blocks have 64 elements, but DGT enters in its optimal setup with
32-thread blocks. Figure 1 expands this analysis for further configurations. When N = 4096,
a considerable slowdown of the DGT is observed, related to its inefficiency in exploiting the
hardware’s resources. The NTT starts to move from its optimal configuration when N = 8192,
losing execution efficiency. At the same time, the DGT finds its best performance, in which a
speedup in the interval between 10 and 45 residues is observed.

In larger instances, AOA-DGT and AOA-NTT suffer from the increasing consumption
of shared memory, which rises bank conflicts, and thread block synchronization becomes more
expensive, since blocks must be split among several warps.

3.2 Impact on CKKS Homomorphic Primitives
The NTT and DGT transforms are applicable to the CKKS context for reducing the complexity
of polynomial multiplications. However, the consequences go beyond that. For instance, the
basis extension methods ModUp and ModDown, described in Section 2.3, cannot be expressed
in an arithmetic circuit that can be evaluated in the domains of the transforms. Thus, certain
operations, such as homomorphic multiplication, require converting between distinct domains.
One would prefer to keep the data structure associated with each transform to avoid conversion
costs. In that case, the implementation of those methods would have to consider that data
structure and would be affected by its particularities. Thus, Table 1 is not sufficient to decisively
conclude about the suitability of each method regarding its employment to CKKS.

Table 2 compares the CKKS’ homomorphic addition and multiplication using each transform.
When the homomorphic addition is implemented in AOA-DGT, it presents a slowdown of around
10%. This is a straightforward procedure and, intuitively, one would expect the same performance
in both implementations since the required number of modular additions is the same. However,
this is an extremely memory-bound procedure. Apart from memory transactions, it only requires
integer additions. Even the related reductions modulo p can be implemented with a single integer
addition by constant-time selection of a+b and a+b−p. Hence, the memory overhead outweighs
the computational cost. Some of the kernel launch cost can be amortized by executing the entire
homomorphic addition in a single CUDA kernel. However, the profiler still indicates that both
implementations achieve very low occupancy and warps may stall waiting for load and store
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Figure 1: Ratio (DGT/NTT) of the DGT and NTT execution time for different polyno-
mial degrees and varying sizes of RNS basis. Measurements computed as the average of
100 independent executions on an NVIDIA Tesla V100 GPU.
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transactions to the device’s memory. Notice that the implementation in AOA-DGT takes twice
the number of input and output operands, thus being more affected by warps stalls.

Algorithm 3 Pseudo-code of CKKS’ homomorphic multiplication
Require: ct0 ≡ CKKS.Encrypt(m0) and ct1 ≡ CKKS.Encrypt(m1), and evk as an eval-

uation key.
Ensure: ct2 such that ct2 ≡ CKKS.Encrypt(m0 ×m1).

ĉt0 = Transform(ct0)
ĉt1 = Transform(ct1)
d̂ = CKKS.DR2(ĉt0, ĉt1)
d = InverseTransform(d̂)
e2 := ModUpCℓ←Dℓ

(d2)
ê2 = Transform(e2)
ĉt := ê2 × evk
ct = InverseTransform(ĉt)
a := ModDownDℓ←Cℓ(ct)
ct2 := (a0 + d0, a1 + d1)
return ct2

In contrast, homomorphic multiplication is a much more complex operation, composed of
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Table 2: Comparison of homomorphic operations using the DGT and the NTT to perform
the multiplication of 2n-degree polynomials with log q = 323, providing at least 80-bit
security level when n ≥ 13. Rescaling is not considered for homomorphic multiplication.
Measurements, in microseconds, computed as the average of 100 independent executions
on an NVIDIA Tesla V100 GPU.

Hom. Add. Hom. Mul.
n DGT (µs) NTT (µs) DGT/NTT DGT (µs) NTT (µs) DGT/NTT
12 4.4 4.1 1.07 188.6 175.8 1.07
13 5.7 5.5 1.04 237.9 251.6 0.95
14 8.8 8.3 1.06 380.7 395.1 0.96
15 15.9 14.2 1.12 652.4 725.4 0.90
16 30.8 25.5 1.21 1232.9 1402.8 0.88

Table 3: Comparison of the latency needed for each component of a homomorphic multi-
plication algorithm using the DGT and the NTT to perform polynomial multiplication.
We also compare them with two distinct methods for basis conversion, a canonical and an
optimized version applied to AOA-NTT to increase its arithmetic density. The canonical
fast basis extension algorithms are implemented following Algorithm 4 whereas the opti-
mized uses Algorithm 5. These values were obtained through NVIDIA’s Nsight Systems
2021.2.1.2 on a machine with an NVIDIA Tesla V100 GPU. The results were evaluated
on 216-degree polynomials with log q = 1831, composed by 53- and 54-element main and
secondary basis, respectively.

DGT (µs) NTT (µs) Ratio Opt. (µs) Ratio
ModUp 2377.0 4928.9 0.48 2592.8 0.92

ModDown 1659.2 1854.7 0.89 1896.6 0.87
Transforms 1131.2 1054.8 1.07 1062.8 1.06
Integer Op. 354.3 227.3 1.56 203.2 1.74

Total 5521.7 8065.7 0.68 5755.5 0.96

arithmetic operations, basis extensions, and transformations between the polynomial and trans-
form domain, as shown in Algorithm 3 and discussed in Section 2.3. In Table 2, AOA-NTT
presents a slowdown that increases with the ring degree. This result appears to contradict the
observation presented in Section 3.1, when we observed a better performance for the NTT on
these parameters.

In Table 3, we provide experimental results for each component of the homomorphic multi-
plication, allowing them to be observed separately on a much bigger instance. NVIDIA’s profiler
tool reveals that the basis extension procedures occupy a critical role in homomorphic multipli-
cation. In AOA-NTT, ModUp takes 61% of the primitive’s computing time, while ModDown
takes 23%. Also, the procedures ModUp and ModDown consumes 43% and 30% of the overall
running time of AOA-DGT, respectively. For the results in the first two columns, both basis
switching methods were implemented as in Algorithm 4. Specially, the profiling tool indicated
that ModUp is roughly 2× slower in AOA-NTT in comparison with AOA-DGT, and that
ModDown presents a non-negligible slowdown of 11%.

Our implementation of ModUp for the NTT issues 2.2× more instructions than the DGT
approach, suggesting that the processor scheduler is being less efficient. We verified this hypoth-
esis by refactoring our implementation according to Algorithm 5. Experimental results for this
optimized version are referred to as “Opt.” in Table 3. Now, each thread handles two coeffi-
cients, and same-instruction operations are called sequentially, inducing the processor into dual
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Algorithm 4 Canonical basis extension
Require: aC an N -degree polynomial represented in the main RNS basis C = {q0, . . . , qℓ}.
Ensure: aD an N -degree polynomial represented in the secondary RNS basis D =
{p0, . . . , pk}.
for i = 0; i ≤ k; i = i+ 1 do

a
(i)
D = {0, . . . , 0}

for j = 0; j ≤ ℓ; j = j + 1 do
for z = 0; z < N ; z = z + 1 do

x = a
(j)
C [z]

aux = x · q̂j−1
aux = aux mod qj
aux = aux · q̂j
aux = aux mod pi
aux = aux + a

(i)
D [z]

aux = aux mod pi
a
(i)
D [z] = aux

end for
end for

end for
return aD

issue mode. This operation emulates the behavior of the DGT, which benefits from the input’s
folding. Table 3 shows this optimization partially solves the slowdown for ModUp, although not
affecting ModDown. No benefit could be measured for this technique on DGT, suggesting that
the previous approach already saturates the processor’s dual-issue capability.

The effect of this optimized version of ModUp on homomorphic multiplication is summarized
in Table 4. By replacing that method we can observe a considerable performance gain that
matches DGT’s implementation in most cases. This result goes towards Badawi et al.’s claim that
the DGT better fits CUDA’s processing paradigm [6]. The folding property of DGT naturally
increases the arithmetic density, which benefits the execution on GPUs.

Table 4: Comparison of homomorphic operations using the DGT and the NTT to ac-
celerate polynomial multiplication for 2n-degree polynomials and log q = 323, providing
at least 80-bit security level when n ≥ 13. Rescaling is not considered for homomorphic
multiplication. This experiment uses the Algorithm 5 on AOA-NTT, which increases
arithmetic density per thread for the basis extension algorithms. Measurements, in mi-
croseconds, computed as the average of 100 independent executions on an NVIDIA Tesla
V100 GPU.

Hom. Mul. (µs)
n DGT NTT Ratio
12 188.6 175.4 1.08
13 237.9 240.8 0.99
14 380.7 381.0 1.00
15 652.4 681.6 0.96
16 1232.9 1318.6 0.94
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Algorithm 5 Optimized basis extension
Require: aC an N -degree polynomial represented in the main RNS basis C = {q0, . . . , qℓ},

for N ≡ 0 mod 2.
Ensure: aD an N -degree polynomial represented in the secondary RNS basis D =
{p0, . . . , pk}, for N ≡ 0 mod 2.
Nh := N/2
for i = 0; i ≤ k; i = i+ 1 do

a
(i)
D = {0, . . . , 0}

for j = 0; j ≤ ℓ; j = j + 1 do
for z = 0; z < Nh; z = z + 1 do

x0 , x1 = a
(j)
C [z] , a(j)C [z +Nh]

aux0 , aux1 = x0 · q̂j−1 , x1 · q̂j−1
aux0 , aux1 = aux0 mod qj , aux1 mod qj
aux0 , aux1 = aux0 · q̂j , aux1 · q̂j
aux0 , aux1 = aux0 mod pi , aux1 mod pi
aux0 , aux1 = aux0 + a

(i)
D [z] , aux1 + a

(i)
D [z +Nh]

aux0 , aux1 = aux0 mod pi , aux1 mod pi
a
(i)
D [z] , a(i)D [z +Nh] = aux0 , aux1

end for
end for

end for
return aD

4 Case Study: Homomorphic Logistic Regression
Logistic Regression (LR) is a learning algorithm widely used to solve classification problems.
Basically, LR tries to model dependence between variables [19]. For instance, in a binary classi-
fication problem, LR takes a dataset composed by n records of the form (yi,xi), with yi ∈ {0, 1}
and xi ∈ Rd. Its objective is to predict the value of y given x. For that, it assumes that the
distribution of y given x is

Pr[y = 1 | x] := σ(−x′⊤w), (3)

for some fixed vector w of weights, x′i = (1 | xi) ∈ Rd+1, and the Sigmoid function σ(x) = 1
1+e−x .

Thus, by having an approximation wapprox for w, we can infer y with a predictable accuracy by
evaluating σ(−x′⊤wapprox).

LR can be seen as a neural network composed by a single hidden unit that uses the Sigmoid
as the activation function. Its implementation resembles some of the challenges of implementing
more complex neural networks, as selecting homomorphic compatible approximations of those
functions [11]. Hence, this is a relevant application for homomorphic encryption and, in partic-
ular, to evaluate using the DGT or the NTT in an implementation of CKKS.

The computation of w is done in the training phase. A training dataset is used to compute
a wapprox that sufficiently approximates w, and a test dataset is used to evaluate the quality
of the approximation. The Gradient Descent method is a common strategy for training [42].
It selects an initial w0

approx and repeatedly computes wj
approx = wj−1

approx − s · ∆ · J(xi) until a
certain objective is satisfied (e.g. a certain number of iterations is executed), for s an arbitrary
step size and J the loss function related to the problem. By modifying wapprox in the negative
direction of the gradient of J , we minimize this function, obtaining a better approximation for
the weight vector. However, this is computationally costly and a delicate procedure that may
require thousands of multiplications to achieve a suitable wapprox. Moreover, it can also require
human-supervised iterations to adjust the network topology if we consider more complex neural
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networks. Hence, since training is done much less frequently than inference, in this work, we
focus only on the effects of the hierarchical transforms in the inference phase, when predictions
are done by evaluating Equation 3 using wapprox.

Lastly, it is important to notice that the Sigmoid function cannot be computed homomorphi-
cally. In this sense, similar works that also implement LR inference on FHE schemes avoid its
computation by just taking the outcome of x′⊤w as the classification result [10]. An alternative
approach is to approximate the computation of the Sigmoid function using the related Taylor
series expansion [29]. The former strategy can retain the classification result but fails to compute
the probability of a specific record belonging to a particular class. Conversely, approximating the
Sigmoid function requires several additional multiplicative levels per ciphertext since such ap-
proximation is usually made using around 4 and 8-degree polynomials according to the required
precision.

Implementation We assume a scenario in which both the training and the model was already
computed. It could be done over plaintexts through a standard library as scikit-learn or
PyTorch [39, 38], or over ciphertexts [19, 11, 10]. Then, CUDA-enabled nodes need to classify
encrypted data using the model given as input. This model could be made available as plaintext,
contemplating cases in which the model owner is contracted to evaluate third-party data, or in
encrypted form, when the computation is performed by an entity that should not have access to
the model.

We follow other works in the literature that apply learning algorithms to the MNIST dataset [33].
The MNIST dataset is a classical data collection of handwritten digits, composed of black and
white images representing digits between 0 and 9, each having 28×28 = 784 pixels. These images
are split into a training and a test set with 60, 000 and 10, 000 records, respectively. Moreover,
each image is unique regarding the handwritten style and the expected complexity for its inter-
pretation. So, the digit recognition problem involves classifying m images among d = 10 classes
of digits, each image having its pixel columns serialized, composing n = 784-element arrays.

We trained a model using a simple Python script that applied the scikit-learn library’s
LR implementation to the training set of images. The outcome is a model M that indicates
an accuracy of 0.9167 when evaluated over the test set. This model, as Equation 3 suggests, is
simply a d × n matrix of real numbers, represented using the float data type, such that each
row relates to a classification index. So, it follows that d = 10 and n = 784.

In this MNIST context, two ciphertext designs were evaluated, as follows.

Direct: In a simple implementation, we encrypt each row of the model in a ciphertext, having
their columns distributed through the slots. So, a single ciphertext stores all the columns
related to a particular digit. This implies that d ciphertexts are needed to fully encrypt
the model M. We perform a similar process to encrypt images, encrypting each image
into a single ciphertext. Thus, a set of m images becomes a set of m ciphertexts, each one
using n slots, as shown in Algorithm 7.

Transposed: The direct approach has memory consumption efficiency but requires a sequence
of slots rotations to execute LR’s inference. An alternative to that is the transposition
of the operands. An n-pixel image dataset with m records becomes a matrix of n rows
and m columns in which each row is encrypted to a single ciphertext. However, the
model encryption requires each element to be encrypted in a single ciphertext, so we can
compute the inner product. This implies a considerable increase in memory consumption.
The model encryption in this case requires n·d m-slot ciphertexts. This design is presented
in Algorithm 8.

In more detail, Algorithm 7 receives an encrypted set of images such that each image is
encapsulated in a single ciphertext. Moreover, it also receives the trained model, which
can be encrypted or exposed (in plaintext). LetM∈ Rd×Rn be the model. If encrypted,
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the algorithm receives a vector W = {CKKS.Encrypt(wi,∗) | wi,∗ ∈M}. Otherwise, it
receives W = {wi,∗ | wi,∗ ∈M}.
The input of Algorithm 8 is transposed regarding Algorithm 7. This time, the set of
images is encrypted such that each ciphertext stores a single pixel of all images. Thus, a
m-sized set of n-pixel images becomes n ciphertexts of m slots. When executed with the
exposed model, it takes as input a matrix W =

{
wi,j | wi,j ∈M⊤

}
. Otherwise, it receives

a matrix of ciphertexts such that W =
{
CKKS.Encrypt({wj,i, . . . , wj,i}) | wi,j ∈M⊤

}
.

Initially, we consider that the inference is executed without computing the Sigmoid function.
In this case, the direct strategy requires d+m ciphertexts with at least n available slots to encrypt
images and the model. The transposed strategy requires n ·(d+1) ciphertexts containing at least
m slots. Hence, the direct and the transposed ciphertext designs require d+m = 10+ 10, 000 =
10, 010 and n·(d+1) = 784·11 = 8624 ciphertexts, respectively. Also, the direct method performs
two homomorphic multiplications to compute the inner product whereas the transposed requires
only one homomorphic multiplication.

In the transposed strategy, the number of multiplications and the encoding of the MNIST
test set of images require 10,000 slots. Thus, since our implementation only supports power-of-2
polynomials, we need that N = 32, 768 and log q = 115, composed by a 2-element RNS basis.
We use the LWE estimator of Albrecht, Player, and Scott [3] to estimate the hardness of the
proposed parameter set against the fastest LWE solvers currently known. For that, we obtain
that the cost of running lattice attacks against the underlying LWE instance is at least 21343,
comprehending the cost to run the uSVP variant of the primal lattice attack.

Considering that a maximum number of 784 slots are needed per ciphertext in the direct
design, we would require that N = 2, 048 and log q = 167, composed by a 3-element RNS
basis. However, the estimated hardness of such a parameter set is equivalent to a 47-bit security
level, not surpassing the 100-bit security level threshold. By choosing N = 8, 192, we obtain
a parameter set with 181-bit security. Consequently, given the high-degree of the polynomial
rings, the memory consumption for executing the LR’s inference over the entire test set of the
MNIST dataset is 3.42 GB and 8.1 GB for direct and transposed versions, respectively.

Moreover, the computation of pi,j , the probability of the image i being classified as the digit
j, is partially solved by a single homomorphic multiplication between the i-th encrypted image
and the j-th encrypted row of M. After that, each slot of the resulting ciphertext will contain
the multiplication between each slot of the operands. To conclude the inner product, we need to
sum all the slots of a ciphertext. That can be done as shown in Algorithm 6, which depends on
a slot rotation done homomorphically [14]. Let c′ = rotate(c, i). If c′ is a rotation of k slots of c,
and si is the i-th slot of c, then s′i+k mod n = si, where s′j is the j-th slot of c′.

Algorithm 6 sumslots – Sum all slots of a ciphertext
Require: A ciphertext ct with n slots.
Ensure: A ciphertext ct′ with n slots such that each slot is the summation of every ct

slot.
ct′ = copy(ct)
for i = n/2; i ≥ 1; i = i/2 do

aux = rotate(ct′, i)
ct′ = ct′ + aux

end for
return ct′

Algorithm 6, however, has a high inherent cost due to the rotation procedure. Table 5 shows
the latencies measured in our implementations. When compared to the costs for homomorphic
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Table 5: Execution times of our implementations of Algorithm 6 on AOA-DGT and
AOA-NTT for cyclotomic polynomial rings with dimension N = 2n+1. The optimized
basis extension approach is used in AOA-NTT. We consider log q = 167, that offers 80-
bit security in all cases, and log q = 323, that achieves this security level when n ≥ 13.
Measurements taken on a Google Cloud instance with an NVIDIA Tesla V100 GPU.

Sumslots
log(q) 323 167
n DGT NTT Ratio DGT NTT Ratio
12 1.34 1.21 1.11 1.05 0.98 1.08
13 1.92 1.89 1.01 1.31 1.22 1.07
14 3.30 3.27 1.01 2.02 1.90 1.07
15 6.44 6.23 1.03 3.44 3.41 1.01
16 13.34 12.84 1.04 6.87 6.59 1.04

multiplication, presented in Table 3, it becomes clear that the slots summation is the most costly
part of the LR inference with the direct approach in both AOA-DGT and AOA-NTT.

Let s = {s0, s1, . . . , sn−1} be the slots of a ciphertext c. The outcome of the c-slot summation
will be a ciphertext c′ such that all its slots will be equal to

∑n−1
i=0 si. To improve space efficiency,

we would like to store information about the suitability of an image i to all candidate digits in a
single ciphertext, with d being the slot related to the digit d. We use DiscardSlotsExcept(c, d) for
that. It returns the homomorphic multiplication of c by the encryption of a = {a0, a1, . . . , an−1}
such that ai = 1, if i = d, and 0, otherwise.

By following the direct approach, we can compute homomorphically a vector of ciphertexts,
denoted pred, such that element with index i stores the encryption of the inner product between
the image i and the weight vector related to each class, as shown in Algorithm 7. By design,
pred supports n slots but only d will be possibly different than zero.

Algorithm 7 Direct version of an encrypted LR inference
Require: W as a n-slot d-element representation of the trained model; X ∈ Rm×Rn as

a set of images; and Xi = CKKS.Encrypt(xi) for xi ∈ X.
Ensure: c ∈ Zn such that ci = d, if xi is classified as the digit d.

Online phase
for j = 0; j < d; j = j + 1 do

for i = 0; i < m; i = i+ 1 do
p = sumslots(Xi ·Wj)
p = DiscardSlotsExcept(p, d)
predi = predi + p

end for
end for

Offline phase
pred = CKKS.Decrypt(pred)
for i = 0; i < m; i = i+ 1 do

ci = argmax(predi)
end for
return c

On the other hand, the transposed design does not need the sumslots procedure to compute
the inner product. Instead, the operands’ transposition enables its replacement by a sequence of
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homomorphic multiplications and additions, as seen in Algorithm 8. As we avoid the expensive
Algorithm 6, a considerable performance improvement of 70× is observed when the model is
encrypted. When the model is given as plaintext, the performance is improved by 700×, as
presented in Table 6.

Algorithm 8 Transposed version of an encrypted LR inference
Require: W as a n×d matrix representing the transposed trained model; X⊤ ∈ Rm×Rn

as a set of transposed images; and Xi = CKKS.Encrypt(xi) for xi ∈ X⊤.
Ensure: c ∈ Zn such that ci = d, if xi is classified as the digit d.

Online phase
for j = 0; j < d; j = j + 1 do

predj = 0
for i = 0; i < n; i = i+ 1 do

predj = predj +Xi ·Wj,i

end for
end for

Offline phase
pred = CKKS.Decrypt(pred)
for i = 0; i < m; i = i+ 1 do

ci = argmax(pred∗,i)
end for
return c

Algorithms 7 and 8 are composed of two phases. The first one, called online phase, is the
more computationally intensive and, as aforementioned, can be executed homomorphically on
a powerful device. The dataset is kept encrypted, and no knowledge of the decryption key
is needed. The second, called offline phase, is the result delivery phase when the matrix of
probabilities is decrypted, and the prediction is made by selecting the index of the maximum
element of the array. This is a much less intensive step that can be executed even on a low-power
device. However, as discussed by Bajard et al., the sign or argmax works also as filters that
truncate data that can be used to retrieve confidential information. Thus, by not executing
these functions homomorphically, an adversary may be able to leak the entire trained model [9].
Moreover, in some cases, as with the Support Vector Machine algorithm, this could also imply
leakage of the input data. Thus, the solution presented in those algorithms assumes a secure
executing environment for the decryption keys and the decrypted matrix of probabilities.

Table 6 presents the latencies for the minimum parameter set that offers at least a 128-bit
security level and provides the required multiplicative depth for each approach. The accumulated
slowdown for sumslots on AOA-DGT, presented in Table 5, impacts its latency on the direct
approach. Nonetheless, the transpose approach does not depend on it and thus AOA-DGT and
AOA-NTT show similar execution times.

No impact was detected for the AOA-NTT implementation done with the optimization
discussed on Section 3.2. The ModUp function performance is directly impacted by the basis
sizes, and in these instances, with 3 and 2-sized bases, that optimization does not seem relevant.

When we consider the canonical formulation of LR inference, which depends on the Sigmoid
function, something different can be observed. We follow the literature and approximate this
function using a polynomial obtained by the truncation at the 8-th term of its Taylor series
approximation [1]. Evaluated through Horner’s rule, it increases by 8 the number of homomorphic
multiplications needed for inference, affecting performance and memory consumption. Table 7
presents our measurements. Motivated by the increased memory requirement, we executed this
experiment on an NVIDIA Tesla A100. In the direct design, the additional multiplications imply
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Table 6: Comparison of the latency per record required to compute the online phase of
the LR inference over records in the test set of the MNIST database with the model
encrypted and as plaintext. The basic design runs with N = 213 and log q = 167 while
the transposed version runs with N = 215 and log q = 115, offering 172-bit and 1343-
bit security level, respectively, according to Albrecht’s estimator [3]. Measurements in
microseconds were taken on a Google Cloud instance with an NVIDIA Tesla V100 GPU.

Model Encrypted Exposed Encrypted⊤ Exposed⊤

DGT 15461.2 13885.9 226.8 15.6
NTT 14396.8 12827.6 238.5 15.2

DGT/NTT 1.07 1.08 0.95 1.03

Table 7: Comparison of the latency per record required to compute the online phase of the
LR inference over records in the test set of the MNIST database with the model encrypted
and as plaintext following the textbook algorithm, with the homomorphic computation
of the Sigmoid function. The basic design runs with N = 214 and log q = 583 while the
transposed version runs with N = 215 and log q = 531, offering 94-bit and 225-bit security
level, respectively, according to Albrecht’s estimator [3]. Measurements in microseconds
were taken on a Google Cloud instance with an NVIDIA Tesla A100 GPU.

Model Encrypted Exposed Encrypted⊤ Exposed⊤

DGT 60279.7 56013.2 475.7 33.1
NTT 65998.5 60968.6 562.6 33.4

DGT/NTT 0.91 0.92 0.85 0.98
NTT-Opt 58200.0 56053.7 517.6 32.5

DGT/NTT-Opt 1.04 1.00 0.92 1.02
NTT/NTT-Opt 1.13 1.09 1.09 1.03

a reduction of the security level of about 50 bits if we choose N = 213. Thus, by setting N = 214,
we could obtain a security level of at least 80 bits.

In bigger instances, the higher arithmetic density of AOA-DGT implied in speedups in all
cases when compared to the non-optimized AOA-NTT. However, when the optimization of the
ModUp function takes place, AOA-NTT is capable of reversing that scenario. The transposed
design, implemented with a plaintext model, presents a consistent similarity between both im-
plementations. Homomorphic addition and multiplication between ciphertexts and plaintexts
are coefficient-wise operations, as shown in Section 2.3.

The folding procedure used by the DGT does not imply the reduction of the number of
required operations. However, the scalability of the DGT-based implementation highlights and
reduces the execution time when more complex methods are considered as basis extension pro-
cedures rotation. This behavior agrees with the conclusion in Section 3.2, which suggests that
the DGT implementation better fits CUDA’s processing paradigm and that its characteristics
have to be ported to AOA-NTT so we can observe a similar, or even superior, performance.

5 Conclusion
Most implementations based on the RLWE problem use the NTT to efficiently compute the
polynomial multiplication in the ring Zp[x]/(x

N + 1) for N a power of two and p a prime.
However, recent works [2, 6, 4] claim that polynomial multiplication can be more efficiently
implemented on GPUs using the DGT instead of the NTT.

In this context, we developed two implementations of the CKKS cryptosystem following the
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same blueprint but diverging on the transform, using either the DGT or the NTT for polynomial
multiplication. We refer to them as AOA-DGT and AOA-NTT. We performed benchmarks on
both implementations by first directly comparing the NTT and DGT transforms as standalone,
and then their implementations of CKKS’ homomorphic multiplication. After that, we extended
our evaluation to the context of logistic regression inference.

Considering the latency for the DGT or NTT isolated, we observed an overall similarity
between both implementations in bigger instances, i.e., the ring dimension ranging from 16384
to 65536. For smaller instances, the NTT outperforms the DGT but with a clear trend towards
equalization in large rings. The exception occurs on 8192-degree polynomial rings when the DGT
reaches its warp efficiency peak. In that case, we observed a speedup of up to 10% for AOA-
DGT. Nevertheless, we could not observe the same behavior for the homomorphic multiplication
in CKKS. In this case, AOA-DGT rapidly surpasses the AOA-NTT performance. A deep
analysis through NVIDIA’s profiler tool showed that the DGT data structure provides a higher
arithmetic density, which efficiently explores the processing hardware, especially on the methods
for basis extension. We were able to successfully match the performance of both implementations
by porting the DGT data representation to AOA-NTT

Lastly, we evaluated the impact of both AOA-DGT and AOA-NTT on a logistic regression
inference performed homomorphically over ciphertexts. We trained a model to classify hand-
written digits in the MNIST dataset and measured the execution time per image in different
configurations, exploring two ciphertext designs. We concluded that, in bigger instances, AOA-
DGT presents a considerable speedup when compared with a standard implementation on the
AOA-NTT, i.e. without methods that increase arithmetic density on CUDA kernels.

Hence, our results indicate that the data representation of the DGT on a CKKS implemen-
tation increases the implementation’s overall performance by assisting the programmer to take
implementation decisions that more efficiently explore the GPU hardware.
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2.4 Privacy-preserving data analytics

In joint work with Rune Jacobsen and Ali Marandi from the Department of Electrical
and Computer Engineering at Aarhus University, we propose an FHE-based homomorphic
encryption method to protect privacy while computing smart meters’ data. It enables a
network of smart meters that collect data from the user and share computation along sev-
eral nodes in the network without revealing information during the calculation. Moreover,
we compare it with Paillier and BGN-based methods and present the practical trade-offs.
To prevent the drawbacks of centralized trusted authority, we emphasize the importance of
using a distributed key generation and distribution system that works with the proposed
CKKS-based method.

This publication title is “Lattice-based Homomorphic Encryption for Privacy-Preserving
Smart Meter Data Analytics“ and is under review at the The Computer Journal (COMPJ).
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Abstract
Privacy-preserving smart meter data collection and analysis are critical for opti-

mizing smart grid environments without compromising privacy. Using homomorphic
encryption techniques, smart meters can encrypt collected data to ensure confiden-
tiality, and other untrusted nodes can further compute the encrypted data without
being able to recover the underlying plaintext. As an illustrative example, this
approach can be useful to compute the monthly electricity consumption without vi-
olating consumer privacy by collecting fine-granular data through small increments
of time. Towards that end, we propose an architecture for privacy-preserving smart
meter data collection, aggregation, and analysis based on lattice-based homomor-
phic encryption. Furthermore, we compare the proposed method with the Paillier
and Boneh-Goh-Nissim (BGN) cryptosystems, which are popular alternatives for ho-
momorphic encryption in smart grids. We consider different services with different
requirements in terms of multiplicative depth, e.g., billing, variance, and non-linear
SVM classification. Accordingly, we measure and show the practical overhead of
using the proposed homomorphic encryption method in terms of communication
traffic (ciphertext size) and latency. Our results show that lattice-based homomor-
phic encryption is more efficient than Paillier and BGN for both multiplication and
addition operations while offering more flexibility in terms of the computation that
can be evaluated homomorphically.

Keywords— Homomorphic encryption, smart meter data analysis, privacy, security

1 Introduction
Smart grids improve traditional power grids with modern information technologies to enable
higher efficiency and robustness in electricity production and distribution. To reach these goals,
a smart grid requires real-time monitoring of the electricity grid and efficient communications
with the consumers and between its components [1]. The expected advantages of adopting the
technology are reducing energy consumption and cost, and preventing major service interrup-
tions.
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The use of smart meters enables near real-time monitoring, bi-directional communications
with the smart grid, demand forecast and planning, and fraud detection. Typically, smart meters
communicate with a gateway that aggregates the received smart meter data and forwards it to
the control center located multiple hops away. Based on the received aggregated data, the
control center can observe the smart grid status. Accordingly, the control center attempts to
optimize the energy consumption and balance the electricity load [2].

User privacy should be preserved during smart meter data collection, aggregation, and pro-
cessing. Otherwise, third parties can detect user behaviors from smart meter data [3, 4]. For ex-
ample, they can easily spot periods of user inactivity. Privacy preservation is critical specifically
when smart meter data is fine-grained. Recently, homomorphic encryption (HE) techniques [5]
have become popular for protecting smart meter data privacy. HE techniques allow computation
over ciphertexts without decryption, in a way that smart meters or their associated gateways
can encrypt the data for untrusted nodes to run statistical functions without learning anything
from the operands or the outcome. The latter, also encrypted, can be only decrypted by the
entity possessing the secret key.

The Paillier cryptosystem [6] is a classical HE method that supports one multiplication
between a ciphertext (CT) and a plaintext (PT) and the addition of CTs. The Boneh-Goh-Nissim
(BGN) scheme allows not only additions but also a single multiplication between ciphertexts,
making it possible to compute statistical operations up to degree 2 on encrypted data, such as
calculating statistical variance [7]. Due to this feature and being relatively efficient, BGN and
Paillier cryptosystems became popular for smart meter data analytics [1, 8]. However, these
cryptosystems rely on hardness assumptions that are not quantum-safe: integer factoring and
discrete logarithm in bilinear pairing groups, respectively, can be solved efficiently in a quantum
computer. Therefore, these cryptosystems do not provide long-lasting security, an important
requirement for systems deployed in the near future but which need to operate for decades
without radical changes. Furthermore, their limitations on the supported types of homomorphic
operations considerably reduce the scope of applications that may use them.

We propose our architecture over CKKS [9], a post-quantum scheme that depends on the
Ring Learning with Errors (RLWE) assumption over lattices [10] and supports a much higher
number of additions and multiplications of ciphertexts. Although it permits doing more than one
multiplication on the encrypted smart meter data, the multiplicative depth of the circuit evalu-
ated over ciphertexts needs to be known in advance before encryption to select the parameters
accordingly.

Going beyond the choice of HE scheme, key management also needs to be designed carefully.
Previous works assume that a trusted authority generates HE encryption, evaluation, and de-
cryption keys [1, 8, 11]. This is a centralized design, creating a single point of failure. Therefore,
we propose that multiple nodes cooperate based on a distributed HE scheme, implementing a
secure multi-party computation (MPC) strategy.

In terms of functionality, the control center typically needs to apply statistical functions, e.g.,
average, variance, and one-way analysis of variance (ANOVA) to the received smart meters’
aggregated data. To balance its computational load and save bandwidth, the control center
can outsource part of the computation to other network components closer to smart meters.
For that, a fog composed of intermediary nodes may be built between smart meters and the
control center. A comprehensive analysis of all the wired and wireless technologies for the smart
grid concludes by recommending the LTE as the communication infrastructure for the smart
grid [12]. In this paper, smart meters use LTE to communicate their data to the fog node that is
connected to the Evolved Node B (eNB). We evaluate the performance of the system including
the CT sizes for different statistical operations and the delay to communicate them to the fog
node.

In summary, the contributions of our work can be summarized as follows:

• Propose a CKKS-based HE method for privacy-preserving smart meter data analysis.
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• Show the practical trade-offs of using the proposed CKKS-based HE method for different
services with different requirements in terms of multiplication depth.

• Compare the proposed CKKS HE method with Paillier and BGN cryptosystems [6, 7].

• Propose a decentralized key center based on MPC concepts that work with the proposed
CKKS-based HE method and avoids the drawbacks of having a centralized trusted au-
thority.

The remainder of this paper is structured as follows. Section 2 discusses related works.
Next, Section 3 describes the system architecture. Section 4 presents the underlying HE method.
Then, Section 5 presents the proposed HE method. After, Section 6 assesses system performance.
Finally, Section 7 concludes the paper.

2 Related Works
To perform privacy-preserving smart meter data aggregation, previous works (e.g., [1, 8]) make
use of Paillier or BGN cryptosystems [6, 7]. The Paillier cryptosystem allows a multiplication
between a ciphertext and a plaintext, while BGN permits a multiplication of two ciphertexts.

Chen et al. [1] assumed that a gateway was responsible for authentication, smart meter data
aggregation, and forwarding the aggregated smart meter data to the control center. The gateway
was enabled to perform statistical functions with degree ≤ 2, so it can perform sum, variance,
and one-way ANOVA over smart meter data, and communicate their results to the control center.
However, if the control center retrieves the aggregated data of smart meters {sm1, sm2, ..., smn}
and also the aggregated data of smart meters {sm1, sm2, ..., smn−1}, it can commit a differential
attack and reveal the individual consumption of smart meter smn. The threat model assumes
that the gateway and the control center are both trusted but the nodes between users and
the gateway, and also between the gateway and the control center, might eavesdrop on the
communications and act as a malicious adversary. The adversary might compromise the gateway
or control center databases. To cope with this, the authors suggested that the gateway uses
differential privacy techniques over smart meter data aggregations. The main drawback of [1] is
that a trusted authority is responsible for system initialization, i.e., setting up system parameters
as well as key generation and distribution. If this entity is successfully attacked, the security
of the entire network gets compromised. This single point of failure is avoided in this paper
through the use of secure MPC to form a distributed key center, providing robustness to key
generation and distribution processes.

The work in [11] emphasizes that fog nodes can assist the utility company and mediate
interactions between the control center and the consumers. Therefore, fog nodes can handle
service requests and commands from the control center to provide a variety of services, such
as applying smart electricity pricing strategies, calculating the overall electricity consumption,
smart meter data analysis, and providing the consumers additional electricity when needed. It
uses somewhat homomorphic encryption (SHE) schemes to preserve consumers’ privacy against
fog nodes and enable support to evaluate more complex arithmetic circuits with both additions
and multiplications. SHE is more restricted than leveled homomorphic encryption (LHE), only
allowing the homomorphic evaluation of a subset of circuits of the wider range of circuits that
can be evaluated with LHE. For instance, BGN is a HE scheme that builds ciphertexts that may
be homomorphically evaluated for addition and multiplication. However, since it only supports
a single multiplication, these ciphertexts can only be evaluated on circuits composed exclusively
by additions or which end with a single multiplication [7]. CKKS, on the other hand, produces
ciphertexts that can be evaluated for addition and multiplication without restrictions if we
consider the use of a bootstrapping method (becoming, then, a fully homomorphic scheme [13]),
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or at least may have the encryption parameters adjusted to support an arbitrary circuit, meaning
that it is classified as an LHE scheme.

To ascertain fair pricing and consider distributed electricity generation, Zhao et al. [11] fur-
ther assume that the control center can dynamically apply diversified pricing strategies. It is
assumed that every 15 minutes there is an electricity price pγ . To perform billing based on
diversified electricity prices, the fog node can multiply the encryption of pγ to the encryption
of the consumer’s electricity consumption during the 15-minute period. This use case satisfies
scenarios when the electricity price may be subjected to non-disclosure agreements. The au-
thors considered that the control center can request the fog node to perform a one-way ANOVA
on encrypted consumption reports to assess the impact of diversified electricity prices on con-
sumers’ electricity consumption and subsequently select win-win pricing strategies. The authors
assumed that the control center can be trusted and has access to the decryption keys. However,
for example, in the case of temporal aggregation, the fog node performs the aggregation homo-
morphically and sends the encrypted sum to the control center. Thus, the control center can
decrypt the sum, but cannot reveal individual consumption data.

Jokar et al. [14] discussed the problem of energy theft detection. Energy theft events must be
detected with high accuracy because the inspection is costly for utility companies. Hence, their
work attempts to decouple other seems-to-be-anomalous events from energy theft, e.g., change
of appliances, absence of residents, etc. After processing the energy data using the k-means
algorithm, the data is classified among multiple classes. Therefore, the work in [14] suggested
multi-class SVM classification using the radial basis function, which is one of the most com-
mon kernels for SVM. SVM classification on homomorphically encrypted data is investigated
in [15] and [16]. Rahulamathavan et al. [15] uses the Paillier cryptosystem [6], which can only
support one homomorphic multiplication between a ciphertext and a plaintext. However, SVM
classification using radial basis or a polynomial kernel function (as considered by [15]) cannot
be done with only one multiplication. To cope with this limitation of the Paillier cryptosys-
tem, the work in [15] suggested a two-phase procedure that sends the ciphertexts to a trusted
server, that decrypts them, applies the kernel function, and encrypts the result before returning
it. In this paper, we show that the proposed CKKS-based HE method does not require any
communications with a trusted server to perform the SVM classification, which is a significant
advantage compared to [15]. Bajard et al. [16] presented a detailed description of the problem of
instantiating SVM over FHE and describe techniques for its efficient implementation, as the for-
mulation of the sign evaluation, which needs to be expressed as an arithmetic circuit. For that,
they proposed a function approximation through the Newton-Raphson procedure. Moreover,
their work targeted parallel implementation by decomposing the operands using the Residue
Number System (RNS) and doing the computation on a CUDA-enabled GPU. Lastly, they offer
a polynomial evaluation algorithm that minimizes multiplicative depth, something considerably
important for FHE schemes.

In terms of implementation frameworks, TenSEAL is a generic framework that implements
many learning algorithms, including logistic regression and convolutional neural networks [17].
Their goal is to offer an API similar to TensorFlow or PyTorch. In this paper, we used TenSEAL
for implementing the proposed CKKS-based HE method.

The work in [12] compared the smart grid system performance using wired (PLC) and
wireless (WiMAX, LTE) technologies. The results confirm that using full wireless technology
(in this case LTE) results in better performance. More precisely, using PLC in the low voltage
area and LTE at the medium/high voltage areas results in higher latencies compared to the case
where LTE was used at all voltage areas. Furthermore, their work shows that the requirements
of the IEC 61850 standard are satisfied using the LTE communication medium, while the use
of PLC combined with LTE leads to longer delays than the case where only LTE was used.
Therefore, it is not suitable for mission-critical services, e.g., smart grid protection.

The core property of a homomorphic scheme, of enabling the manipulation of the encrypted
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plaintext, causes a weakness in systems built upon it. While a ciphertext created using a
non-homomorphic scheme reports tampering if a single bit is modified by a malicious entity,
since its decryption becomes completely disconnected from the plaintext domain, homomorphic
ciphertexts can be manipulated without leaving evidence. For instance, in the context of this
work, a smart meter may submit an encrypted measurement to a fog node expecting that it
will compute the electricity bill using a particular price. If the fog node is behaving maliciously,
it can use the wrong price table. The outcome, decrypted by the smart meter or the utility
company, may be indistinguishable from the expected outcome.

A verifiable computation (VC) scheme, as defined by Bois et al. [18], can be implemented to-
gether with a HE scheme to validate that no adulteration occurred when a ciphertext, encrypted
by a HE scheme, is submitted to an untrusted entity to be evaluated on a particular circuit.
Fiore et al. [19] define a VC scheme using four main procedures: 1) KeyGen(f, λ) that receives
a function f and generates a public key encoding f and a secret key to be stored securely; 2)
ProbGensk(x) that encodes an input x using sk, resulting in a public value σx, which is given
to the entity that will perform the computation, and a secret value τx, which is given to the
entity that will verify the outcome; 3) Computepk(σx) that combines σx and pk to compute σy,
an encoded version of y = f(x); 4) Verifysk(τx, σy) that returns acc = 1 if the verifier accepts
that y = f(x), or acc = 0 otherwise.

An important property is that the verifier must be able to verify the correctness of y much
faster than running the actual computation. Fiore et al.[19] propose a classical instantiation of
a VC scheme that supports only the evaluation of quadratic functions on top of the Brakerski
and Vaikuntanathan (BV) cryptosystem [20]. Bois et al. [18] and Fiore et al. [21] improve
that work by increasing the range of parameters supported, boosting performance, but also the
complexity of supported functions. While [19] supports only quadratic functions, [18] and [21]
also handle computations of constant multiplicative depth. However, the state of the art still
does not support the main HE schemes available in the literature and is under discussion for
standardization, such as the CKKS, BFV, or TFHE [9, 22, 23]. Moreover, it also does not
provide a robust solution that addresses all the arithmetic circuits supported by those.

3 System Model
This Section presents the system architecture, composed of smart meters measuring the energy
consumed by users; a control center, which manages the network; and several supporting entities
used to perform computation and manage cryptographic keys used by smart meters and the
control center. Also, we present our trust and threat model.

3.1 System Architecture
The system architecture (Figure 1) considers a utility company responsible for the generation,
storage, and distribution of electricity. The control center analyzes the smart meter data and
monitors the substations by sending commands to them. Substations distribute electricity to the
customers. We assume that the control center has deployed fog nodes close to the substations
that can process aggregated smart meter data for their geographical area. This reduces the
processing load of the control center. Following related work, we also use the LTE technology
for communicating smart meters’ data to an eNB that is directly connected to a fog node. The
fog node is a server that is responsible for performing the required computations on the smart
meter data.

Previous works assume that a single node called trusted authority generates and distributes
the cryptographic keys [1, 11]. However, it is not ideal to generate and distribute those cryp-
tographic keys in a centralized way because the trusted authority becomes a single point of
failure. Therefore, if it is compromised by third parties or a malicious administrator, the entire
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Figure 1: System architecture consisting of smart meters, eNodeBs and fog nodes, routers,
key center, control center, and utility company.

network becomes vulnerable. A better design consists of nodes working together to perform
the key center tasks with MPC protocols. Mouchet et al. [24] propose a distributed version of
BFV, an FHE scheme, that may address that issue [22]. In this paper, we extend their contri-
bution by porting it to the CKKS, as discussed in Section 4.2. We propose a distributed key
center that generates and distributes the required cryptographic keys among the network nodes
involved in the encryption and evaluation processes. The distributed key center consists of a
group of nodes that run MPC protocols. We assume a key center gateway node is responsible
for communications between the key center structure and other network nodes. Note that the
key center gateway could be one of the key center nodes, which can generate and distribute the
public data required by the protocols; and conclude the collective decryption protocol. Smart
meters use the collective public keys to encrypt their data. Fog nodes use the collective evalua-
tion keys to homomorphically evaluate the aggregated smart meter data. No decryption key is
communicated through any nodes in the network. All decryption requests must be submitted to
the key center. We assume that the fog nodes are not trusted, and thus no decryption would be
authorized for them. The control center might request to decrypt the aggregated smart meter
data that it has received from the fog nodes.

In the following, we discuss some models for secure communications. These instances are
simple in the sense that they do not offer a mechanism to assert data integrity. We consider
NIST’s definition of data integrity, which requires the data not to be modified in an unauthorized
manner during storage, processing, and while it is transmitted [25]. We cannot guarantee that
the data used during the computation came from the user we expect to, or it was evaluated
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through the agreed arithmetic circuit (e.g., an end-user cannot be sure that the received bill was
calculated by a sequence of additions of measurements made by the user’s smart meter). Thus,
in all these models, we have to trust that the entities will evaluate data correctly, and the users
will not try to contest the outcome.

3.2 Trust Model
A property intrinsic to HE is the malleability of ciphertexts, i.e., anyone in possession of ci-
phertext can evaluate it on an arbitrary circuit. This may result in a new ciphertext that keeps
no trace of what happened. In a non-malleable scheme, any manipulation results in an invalid
ciphertext, and the responsible entities could detect that on decryption. Thus, to mitigate the
risks, we assume to have secure communication between the system components, asserting data
integrity by protecting homomorphically encrypted ciphertexts from malicious parties interested
in exploiting their natural malleability properties (i.e., one with access to them would be able
to perform arithmetic operations without being noticed). This could be done using a verifiable
computation (VC) scheme working as a receipt of all arithmetic operations done with a partic-
ular ciphertext, as discussed in Section 2. This protects the ciphertext against malicious nodes,
which can be part of a communication path within the network.

Our trust model assumes the following network properties: 1) smart meters are trusted to
measure energy consumption correctly, so the utility company is trusted to operate smart meters
correctly; 2) the key center cannot collude with other entities to decrypt confidential data that is
not supposed to be revealed, although if the key center is implemented through MPC protocols,
a subset of colluding parties can be tolerated; 3) the key center must be capable of generating
and sharing securely public keys for all relevant cryptographic schemes in use; 4) to provide the
functionality needed for HE, the key center generates the public keys and securely shares them
with each smart meter cluster. Furthermore, the key center will be available for decrypting the
results of computations; 5) the secret keys only need to be generated once or every time the
cryptographic keys need to be refreshed, e.g., when a new party joins or leaves the key center
party. It is required to refresh all the related public keys when that happens, 6) after any
computation, decryption can only be executed by the key center. Thus, decryption requests are
forwarded to the key center. If the key center accepts a decryption request, it will decrypt the
ciphertext and return its plaintext through a secure channel. When a node sends a decryption
request, it has to digitally sign the decryption request so that the key center can verify the
signature of requesting node to know whether that node is eligible to send a decryption request.

3.3 Threat Model
We consider an adversary to be a member of the network or a third party that takes control of
a member of the network. Moreover, such an adversary may assume control of more than one
network member to increase its attack surface by exploring possibilities of collusion.

By collusion, we consider two or more entities combining their data to break data secrecy or
produce incorrect computation output masked as correct. For instance, fog nodes receive users’
data and are allowed to do computation but not to decrypt. Two or more nodes might collude,
combining their shares of the evaluation key to learn something about the decryption key or
producing erroneous computation outcomes Another possibility would be the collusion between
a fog node and a smart meter, which might cause, for instance, wrong energy consumption being
notified to the control center. Any collusion involving the control center has serious implications
because it can see the plaintext of aggregated smart meters’ data. One important case is the
possibility of a differential attack when the control center colludes with fog nodes [1]. This could
circumvent privacy mechanisms to protect a single user’s data.

In summary, our threat model assumes the following network properties: 1) the control
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center is not trusted with access to fine-grained smart meter data, i.e., it may only receive the
plaintext of aggregated data to protect individual customers’ privacy; 2) parties conducting
outsourced computation cannot observe inputs or outputs of computation performed on behalf
of the control center, since data is always encrypted; 3) fog nodes are not trusted and thus cannot
see the plaintexts; 4) individual party members operating as the parties of the key center are
not trusted, and only a quorum of the minimal size can be of all parties or a majority fraction of
it; 5) energy retailers are not trusted to have access to the outcome of computation performed
by the fog nodes or the control center, otherwise, it can be exploited and result in a differential
attack [1].

3.4 Use Cases
In the following we present use cases that can be performed over the described network.

Billing: it could be computed based on monthly aggregated data or based on time-of-use
(ToU) price.

Average: to calculate the average of measurements reported by n > 0 smart meters, the fog
node adds up the n measurements and multiplies the result by 1/n, which gives the encrypted
outcome. It then sends the result to the control center, which may ask the key center for
decryption.

Variance: when the fog node has received the homomorphically encrypted measurements
mi of n smart meters and wants to compute the variance over them, the fog node has to compute
the variance 1

n

∑n
i=1(mi − m̄)2 where m̄ is the mean for the n records. This expression can be

rewritten as 1
n

∑n
i=1 m2

i − 1
n2 (∑n

i=1 mi)2, thus the fog node only needs to compute homomorphic
evaluations of squarings and additions, with a total multiplicative depth of one [1].

One-way ANOVA: When the control center defines s ≥ 3 different pricing strategies, it
might apply one-way ANOVA to the consumers’ daily electricity consumption to understand
whether these pricing strategies had a considerable impact on the electricity usage [1]. Let
mij be the energy consumption of user Ui under the j-th pricing strategy. For testing the
hypothesis, one evaluates if F = ASSB

/(n−s)
ASSW

/(s−1) is above a fixed critical threshold FC , for the sum

of squares between groups ASSB
=

s∑

j=1

n∑

i=1
m2

ij −
1
n

s∑

j=1
(

n∑

i=1
mij)2, and the sum of squares within

groups ASSW
= 1

n

∑s
j=1(∑n

i=1 mij)2− 1
ns(∑s

j=1
∑n

i=1 mij)2. The computation again requires the
homomorphic evaluation of squares and additions over the encryptions of values mij , with a
total multiplicative depth of one multiplication.

Non-linear SVM classification: We consider the algorithm proposed by Jokar et al. [14]
that leverages SVM classification using the radial basis kernel for energy theft detection. We
assume that training has been done using plaintext (inside the key center or the control center)
and we want to perform privacy-preserving SVM classification using the radial basis kernel that
requires 5 multiplications.

4 Homomorphic Encryption
Homomorphic encryption schemes are defined as those that conserve some mathematical struc-
ture of the data during encryption that allows one to perform computation over ciphertexts. In
this Section, we define cryptosystems those and discuss relevant aspects to this work.

4.1 Notations and Definitions
We denote the operation of randomly sampling an element a from a probability distribution χ
as a←$ χ. When the sampling is uniform from a set X we write it as a←$ U(X).
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Let K be the 2N -th cyclotomic number field and R = OK its ring of integers, which is
represented in its polynomial form as R = Z[x]/(xn + 1). For an integer q ≥ 2, Rq denotes the
quotient ring Rq = R/qR = Zq[x]/(xn + 1). Furthermore, let C = {q0, q1, . . . , qℓ} be a set of
coprime integers, also referred as a basis, and q = Πℓ

i=0qi. If p ∈ RC , then ∃P ∈ Rq such that
p := {[P ]q0 , [P ]q1 , . . . , [P ]qℓ

}. Operations such as addition and multiplication over elements in RC
shall be taken as coefficient-wise. That is, if a, b ∈ RC then a + b =

{
[a0 + b0]q0 , . . . , [aℓ + bℓ]qℓ

}
.

Let (E ,D) be a pair of encryption and decryption functions that compose a cryptographic
scheme. Moreover, let c0 = Esk(m0) and c1 = Esk(m1) be encryptions related to a certain secret
key sk. If this scheme is homomorphic regarding an operator ⋄, then there exists an operator
◦ such that D (c0 ◦ c1) ≡ m0 ⋄m1 [26]. A scheme that supports this property for an unlimited
quantity of additions and multiplications is called fully homomorphic (FHE).

If a homomorphic encryption scheme supports only one of these operations, it is called par-
tially homomorphic. Paillier cryptosystem is a well-known partially homomorphic encryption
scheme [6]. Based on the composite residuosity class problem, it is an additive homomorphic
encryption scheme, i.e., it supports the addition of encrypted messages, but this implies that
it also supports the multiplication of ciphertexts by plaintexts, a natural extension of support-
ing additions [6]. Nonetheless, the underlying problem is not secure against attacks based on
quantum computers [27].

The Boneh-Goh-Nissim (BGN) cryptosystem was the first proposed homomorphic encryp-
tion scheme that allows an arbitrary number of homomorphic additions and exactly one mul-
tiplication with a constant-size ciphertext [7]. Let e : G1 × G2 → GT be a pairing between
three multiplicatively subgroups of prime order r. For efficiency, we refer to the version pro-
posed by [28] that employs bilinear maps in the so-called asymmetric setting instead of the
original composite-order curves [29]. Define a projecting pairing ê : G × H → GT between
G = G2

1, H = G2
2, Gt = G4

T that corresponds to a product of 4 invocations of the pairing e.
Under the BGN cryptosystem, one can encrypt a message m into either G or H and perform an
arbitrary number of homomorphic additions in both G and H. A homomorphic multiplication
between two ciphertexts combines the G elements from the first ciphertext with the H elements
from the second ciphertext and maps them to GT , where homomorphic additions can still be
performed but no further multiplications. The BGN cryptosystem can be defined as:

• BGN.KeyGen(1λ): Sample g ←$ G1, h←$ G2, set the secret key as sk := (x, y, z, x′, y′, z′) ∈
(Z∗

r)6 and compute the public key pk := ((g, gx), (gy, gz), (h, hx′), (hy′
, hz′)).

• BGN.Encrypt(m, pk): Sample k ←$ Z∗
r , return (C1, C2) = ((gym+k, gzm+xk), (hy′m+k, hz′m+x′k)).

• BGN.Add(C, D) : for ciphertexts C = (C1, C2), D = (D1, D2), return (C1 ·D1, C2 ·D2).

• BGN.Multiply(C, D): for C, D as above, compute and return ê(C1, D2) =
∏

1≤i,j≤2
e(C1,i, D2,j)) =

ê(D1, C2).

• BGN.Decrypt(m, pk): For ciphertext in G, compute the discrete logarithm of (gym+k)x(gzm+xk)−1 =
(gxy−z)m in base gxy−z. Decryption in H (or Gt after a multiplication) can be carried out
similarly.

Another important scheme was proposed by Cheon et al. (CKKS) [9]. This is a recent
RLWE-based cryptosystem that follows the blueprint proposed by Gentry to build a quantum-
resistant FHE scheme [13]. An important particularity of CKKS is that it aims at non-integer
arithmetic, defining the plaintext domain as a ring of polynomials with complex coefficients
and tolerating the manipulation of approximations of its elements. The decryption outcome
is always an approximation of the expected result, affected by the natural imprecision related
to the fixed-precision arithmetic but also by the encryption noise intrinsic to the encryption
process.
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CKKS uses the Residue Number System (RNS) to define arithmetic that does not require
multi-precision operations. RNS states that an integer x can be decomposed as a set of residues
in RC , for a basis C = {q0, q1, . . . , qℓ}. A ciphertext, denoted ct = (c0, c1), is a pair of elements
in RC . In other words, ct = {(c(i)

0 , c
(i)
1 )}0≤i≤ℓ such that (c(i)

0 , c
(i)
1 ) ∈ Rqi × Rqi . The CKKS

cryptosystem has an embedded encoding method to convert complex numbers into a more
convenient format for encryption that supports homomorphic operations. Let z be a vector of n
complex numbers and ∆ a scalar. In practice, we have that decode(z) = ⌊FFT(z) ·∆−1⌉, where
FFT is the Fast Fourier Transform [30]. Thus, by taking the inverse operation we can see that
the encoding of z is an element of R.

Let χkey be a secret key distribution, and χerr an encryption key distribution over R. In prac-
tice, χkey is usually defined as a narrow distribution, sampling uniformly from {−1, 0, 1}, and χerr

as the discrete Gaussian. Furthermore, let C = {q0, q1, . . . , qL} and B = {qL+1, qL+2, . . . , qL+k}
be two RNS basis coprime to each other, for an arbitrary integer L. In the following, we present
some of the primitives relevant to this work.

• CKKS.SecKeyGen(1λ): Sample s←$ χkey and set the secret key as sk := (1, s).

• CKKS.PubKeyGen(sk): Sample
(
a(0), . . . , a(L)

)
←$ U(RC) and e←$ χerr. Set the public

key as pk :=
(
pk(j) = (−a(j) · s + e mod qj , a(j))0≤j≤L

)
.

• CKKS.RelinKeyGen(sk): Sample
(
a(0), . . . , a(k+L)

)
←$ U(RC

⋃
B) and e ←$ χerr. Let

b(j) := −a(j) · s +
[∏k−1

i=0 pi

]
gj

+ e mod gj , for gj ∈ C
⋃B. Set the relinearization key

rlk :=
(
rlk(j) = (b(j), a(j))

)
0≤j≤L

.

• CKKS.Encrypt(pk): For m ∈ R, sample v ←$ χenc and e0, e1 ←$ χerr. Output the
ciphertext ct :=

(
ct(j) = v · pk(j) + (m + e0, e1)( mod qj)

)
0≤j≤L

.

• CKKS.Decrypt(sk): Output ct · sk mod q0.

4.2 Distributed CKKS
To avoid depending on a centralized trusted authority, we assume that a cluster of nodes collec-
tively performs storage and generation of secret keys in MPC. Therefore, a malicious third party
interested in subverting the system will need to compromise several nodes before succeeding.
Such threshold cryptosystems assert that a subset of the parties involved in the computation
must agree to achieve a valid result. Thus, if a certain threshold of agreements is not achieved,
the computation is not done. In particular, we call it a distributed scheme when that fraction
is the totality of the parties.

Mouchet et al. apply an additive secret-sharing approach to the BFV and build a distributed
version of that scheme [24]. Their proposal assumes that a group of parties want to issue public
keys so that anyone can execute homomorphic operations but decryption of the outcome is
only possible if the entire group collaborates. Thus, they modify the scheme’s key generation
algorithm so that no party possesses the secret key. Shares of it are split through the nodes
so that they must be securely combined before decryption is executed. They argue that the
similarities between BFV and CKKS allow their method to be ported easily to the latter [24].
In the following, we describe the modifications required on the original CKKS design to convert
it to a distributed version.

4.2.1 Ideal Secret Key
In this context of a threshold scheme, we refer to its secret key as an ideal secret key, in the
sense that it never materializes but only exists as shares distributed among the parties. Let C
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and B be orthogonal RNS bases and P a party. Let si be a secret key generated through CKKS.
SecKeyGen by Pi ⊂ P. An ideal secret key for P, through the additive secret-sharing method,
can be defined as:

s =


 ∑

Pi∈P
si


 mod RC

⋃
B. (1)

Note that each party must handle its share of the secret key as it would handle the secret
key itself. It shall never be made public or shared with other parties. Hence, all operations
that depend on it will need to be executed in an MPC protocol, such as decryption and the
generation of the public and relinearization keys. An implication of defining the ideal secret
key as in Eq. (1) is that its norm grows with O(|P|), impacting the noise growth of the new
scheme [24].

4.2.2 Multi-Party Computation Protocols
Since the secret key is never instantiated, procedures that depend on it must be adapted to work
interactively among the party members.

Collective public key (ColPubKeyGen): Each party member computes a share of the
public key and distributes it to every other party. With all the shares, one can calculate the
group public key.

Let a ∈ RC be a public polynomial represented in base C and si a share of the secret key
generated by a party Pi ∈ P. To compute a collective public key cpk, each party must sample
ei ←$ χerr and disclose bi = PubKeyGen(a, si) = −(a · si + ei) mod RC . From b = ∑

Pi∈P bi

mod RC , sets the collective public key as cpk = (b, a).
Collective relinearization key (ColRelinKeyGen): The relinearization key is com-

puted in 3 interactive steps. In the end, a group evaluation key, which is public, is issued.
Let a ∈ Rk+L

C
⋃

B be a public polynomial represented in base C⋃B and P = Πpi∈Bpi. Each
party Pi must: 1) sample ui ←$ χkey, e0,i, e1,i ←$ χL+k

err and disclose (h0,i, h1,i) = Relin1(a, si) =(
−uia + si[P ]gj + e0,i, sia + e1,i

)
for all gj ∈ C

⋃B, 2) from h0 = ∑
Pj∈P h0,j and h1 = ∑

Pj∈P h1,j ,
sample e2,i, e3,i ←$ χL+k

err and disclose (h′
0,i, h′

1,i) = Relin2(h0, h1, si) = (sih0 + e2,i, (ui − si)h1 +
e3,i), 3) from h′

0 = ∑
Pj∈P h′

0,j and h′
1 = ∑

Pj∈P h′
1,j , outputs crlk = RelinKeyGen(h′

0, h′
1, h1) =

(h′
0 + h′

1, h1).
Combined decryption (ColDecrypt): A share of the decryption result is computed by

each party and all the shares are combined to obtain the actual decryption of the ciphertext.
Let c = (c0, c1) be a ciphertext. Each party Pi must: 1) sample e ←$ χerr and disclose

c′
i = Decrypt1(si, c1) = si·c1+e mod q0 and 2) from c′ = ∑

Pi∈P c′
i, output m′ = Decrypt2(c0) =

c0 + c′ mod q0.
ColDecrypt depends on the parties disclosing si · c1. Since c1 is public, we need the addition

of noise e to protect the secret key share si. Thus, this step implies a noise growing of O(|P |).
Along with these protocols, one can also generalize the ColRelinKeyGen algorithm to define

a collective Key-switching procedure, which can be used to convert a ciphertext encrypted
regarding a secret key s′ to a different key s. However, this is beyond the scope of this paper.

5 Proposed Method
Our proposal assumes that the only entity that holds the decryption keys and is responsible for
the key distribution protocol is the key center. The key center works as a decryption oracle to
the network since it must store all the required decryption keys. It generates and distributes
public keys to smart meters, such as encryption and evaluation keys. We consider that a single

103



secret key is related to a cluster of smart meters (e.g., in a neighborhood or a building). This
cluster may be as small as a single user or as large as needed. Each cluster member receives a
different public key generated through the same secret key. This hides the group relationship
between smart meters, preventing any entity from linking two smart meters to the same group.
Moreover, in this case, one can aggregate multiple user data to, for instance, predict group
demand. However, if the key center fails to authenticate smart meters’ data, different users
in the same cluster may learn about data related to their neighbors. That is, authentication
can not be done through the same pair of encryption keys used for HE, since the private key
is related to the cluster and not particular users. To assert nonrepudiation, the authentication
request must be done through dedicated and specific keys to each entity.

5.1 Distributed Key Center
The distributed key center is instantiated as a cluster of nodes. We need to define protocols
for the collective key establishment and decryption, following the primitives described in Sec-
tion 4.2.2.

Decryption in an MPC protocol depends on the agreement by all members of the key center
cluster that the request is valid and that the protocol can be executed. A token σ must be
submitted together with the ciphertext to assert correctness for the decryption mechanism.
This token may be the public value of a VC scheme or a digital signature asserting that the
decryption came from an authorized entity. If a node of the key center cluster cannot validate
σ, it rejects the decryption. If the number of rejections surpasses a certain parameter T (e.g., 1
in case of a distributed HE scheme), decryption is denied.

To assist communications, we define an Entry fog node, which is an entity responsible for
assisting other members of the key center on the partial computations and relaying of data. It
can be abstract, in the sense that it can be replaced by direct communication among the key
center members, or concrete, as an independent node.

5.2 Network Behavior
Two evaluation steps are considered, performed by a fog node and by the control center. The
first step must be done homomorphically over ciphertexts, but the second step can be executed
over the plaintexts as long as the key center accepts to decrypt the ciphertexts for the control
center. A smart meter keeps a communication cycle with its related fog node with n iterations
consisting of data production (e.g., electricity measurements) and data aggregations at the fog
node, for n arbitrary. After that, the encrypted outcome is sent to the control center, which can
decide to keep data encrypted and execute more computation (locally or remote), or request
decryption to the key center.

Figures 2 and 3 present the key agreement protocol and the decryption protocol, which are
internal operations to the key center and depend on the nodes exchanging information. Figure 4
presents the usual communication procedure for the network members.

This use case has the following properties: 1) if the control center is allowed to ask the key
center for decryptions, the computation can be done over plaintexts, otherwise the ciphertexts
can be rebuilt with different parameters and sent to a third party, 2) data collected from different
smart meters can be aggregated at a fog node or control center level, 3) fog nodes do not handle
plaintexts, 4) fog nodes are not capable of generating valid ciphertexts, 5) there is limited data
secrecy unless a threshold FHE scheme is being used. A centralized key center sees everything.
The distributed key center can solve that, so that only the entity requesting data may have
access to the decrypted plaintext.
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Key centeri Entry fog node
a←$ RC

b←$ Rk+L
C

a, b

ski ←$ CKKS.SecKeyGen()
(h0,i, h1,i)←$ Relin1(b, si)

h0,i, h1,i

(h0, h1)←
(∑

h0,i,
∑

h1,i

)

h0, h1

(h′
0,i, h′

1,i)←$ Relin2(h0, h1, si)

h′
0,i, h′

1,i

(h′
0, h′

1)←
(∑

h′
0,i,

∑
h′

1,i

)

h′
0, h′

1

pk←$ PubKeyGen(a, si)
evk←$ RelinKeyGen(h′

0, h′
1, h1)

pk, evk

Broadcast(pk, evk)

Figure 2: Key agreement protocol (KAP). The members of the key center exchange the
data elements needed for agreement of the shared secret key, generating and broadcasting
public keys to members of the network.

6 Performance Evaluation
For different numbers of multiplications, we measure the ciphertext size. Then, we try to opti-
mally fill the ciphertext slots by experimenting with different data collection frequencies. This
experiment results in suggesting optimal data collection frequencies. To measure the bandwidth
consumption and delay, we have implemented the system in the ns-3 environment [31]. Fi-
nally, we compare the proposed HE method with Paillier and BGN HE methods in terms of
computational overhead.
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Key centeri Entry fog node
Receives a ciphertext c = (c0, c1)
and a token σ

c, σ

b = verify(σ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . if b is false. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

refuse

if #refuses ≥ T : ABORT

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . if b is true . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c′
i ←$ Decrypt1(si, c1)

c′
i

c′ ←
∑

c′
i

m′ = c0 + c′

Figure 3: Decryption protocol (ColDecrypt). An entry fog node receives a request of
decryption for a particular ciphertext. The validity of this request is assured by a token
σ.

6.1 Parameter Selection
For CKKS, we take a power-of-2 degree n, and define Rq = Zq[x]/(xn + 1). This means that our
working ring is composed of polynomials with integer coefficients modulo q and degrees lower or
equal to n− 1. This scheme represents integers using an RNS basis C = {q0, . . . , qL} such that
q = Πl

i=0qi. Moreover, the Discrete Gaussian is usually employed as the error distribution, and
the secret key is sampled from the ternary distribution, i.e., each coefficient is chosen uniformly
random from {−1, 0, 1}. However, there are cases, as with threshold schemes, where the secret
key may be sampled uniformly from Rq. Table 1 presents a parameter recommendation in case
the secret key is sampled from a ternary distribution. To predict the security level offered by
a particular set of parameters in CKKS, we rely on Albrecht et al.’s script in Sage to estimate
security level considering several possible attacks on instances of the LWE problem [32].
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Smart meter Fog node Control center
Calls KAP

Receives (pk, evk)
Receives (evk)

Receives (evk)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup completed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Generate xi

ci = Encpk(xi)

send ci

C = Eval(C, ci)

if i < n

then ask for xi+1

send C

C ′ = Eval(C)

Figure 4: Usual communication behavior. A fog handles intermediary communication
between the smart meter and the control center. This includes relaying public keys but
also executing computation homomorphically.

6.2 Batching and Ciphertext Size
Many modern HE schemes, such as CKKS and BGV [9, 33, 34, 35], support packing techniques
to encrypt multiple messages in a single ciphertext, building homomorphic operations that work
similarly to a single instruction, multiple data (SIMD) implementations. CKKS contains its
own encoder that maps vectors of complex numbers to elements of Rq. As aforementioned,
these elements are represented in a RNS basis C = {q0, . . . , qL}. A fresh CKKS ciphertext,
denoted ct = (c0, c1), is a pair of elements in RC . That is, ct = {(c(i)

0 , c
(i)
1 )}0≤i≤L such that

(c(i)
0 , c

(i)
1 ) ∈ Rqi × Rqi . At this moment, we say that this ciphertext has level L + 1. Each pair

(c(i)
0 , c

(i)
1 ) will be referred as a residue of ct. After a homomorphic multiplication, a rescaling

operation may be required to conserve plaintext precision after decryption. For that, the highest-
index residue of the ciphertext is consumed. That is, after ℓ homomorphic multiplications, ct
becomes a pair of elements in RC−{qL−ℓ,...,qL}, and the ciphertext becomes a ℓ-level ciphertext.

CKKS ciphertexts are capable of storing a certain number of plaintexts, referred as slots.
Let n be the ring degree, as defined in Section 6.1. By design, a CKKS ciphertext supports up
to n/2 slots which can be filled with complex elements.

Based on the above, CKKS ciphertexts require s(n, ℓ) := (2 · n · ℓ) · 64 bits for storage.
Table 2 presents some examples based on data from Table 1. However, the ciphertext expansion
factor also depends on its slot occupancy. Through batching, the expansion factor becomes

s(n,ℓ)
64·batch_size .
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Table 1: Parameter recommendation for different security levels if the secret key is sampled
from a ternary distribution.

n log(q) λ (Security level)
1024 27 128

19 192
14 256

2048 54 128
37 192
29 256

4096 109 128
75 192
58 256

8192 218 128
152 192
118 256

16384 438 128
305 192
237 256

32768 881 128
611 192
476 256

Table 2: Comparison of ciphertext sizes for different parameter selections at 128-bit se-
curity level. It considers the batching of n plaintexts for the CKKS ciphertext and the
equivalent quantity of Paillier’s ciphertexts.

n q CKKS BGN Pallier
(KB) (KB) (KB)

1024 27 442 295 (1.50) 786 (0.56)
2048 54 1769 590 (3.00) 1573 (1.13)
4096 109 7143 1180 (6.05) 3146 (2.27)
8192 218 28574 2359 (12.11) 6291 (4.54)

Table 3: Recommendation of parameters and decomposition that supports a certain num-
ber of multiplications.

n log(q) λ (Sec. level) #mul Decomposition Scale
1024 43 80 1 {43} 21

34 100 1 {34} 16
27 128 1 {27} 13

2048 84 80 2 {35,16,33} 16
84 80 1 {45,39} 21
68 100 1 {37, 31} 18
54 128 1 {31, 23} 15

4096 170 80 4 {40, 21, 21, 21, 21, 40} 21
135 100 3 {35, 21, 21, 21, 35] 21
109 128 2 {35, 21, 21, 30} 21

8192 330 80 5 {54, 46, 46, 46, 46, 46, 46} 46
270 100 5 {54, 36, 36, 36, 36, 36, 36} 36
218 128 5 {54, 26, 26, 26, 26, 26, 34} 26
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Table 4: Size in bits of a Paillier’s ciphertext for different security levels [36].
λ (Security level) Ciphertext size (bits)

80 2048
112 4096
128 6144
192 15360

6.3 Simulation Settings
We have implemented a set of 200 smart meters that are in the radio range of an eNB, which
receives the smart meter data. It is assumed that the eNB is located at the substation owned by
the utility company [37] (cell range is assumed to be 1 km, which is about the same as the range
of an electric grid [11]). We assume that a fog node is connected to the eNB that is responsible
for the storage and processing of the received smart meter data.

In the following, we show results in terms of ciphertext size when 1, 2, or 5 homomorphic
multiplications could be done on it (billing could be done with 1 homomorphic multiplication,
the variance may need 2 homomorphic multiplications, and SVM classification using radial basis
function requires 5 homomorphic multiplications). We use CKKS and selected the parameters
compatible with a 128-bit security level, according to Albrecht’s estimator [32]. Furthermore,
we fill the CKKS ciphertext slots according to different data collection frequencies and attempt
to fill the maximum number of slots such that we avoid wasting bandwidth resources due to
having empty slots. We also report results regarding the delay of communicating ciphertexts,
which can support 1, 2, or 5 multiplications from the smart meters to the eNB.

6.4 Bandwidth Requirement in Different Scenarios
We consider that each smart meter has to report its measurements every 15 minutes [4]. To
encrypt its data, a smart meter needs to know the maximum multiplicative depth presented
in the arithmetic circuits in which the fog node will evaluate ciphertexts. This information
impacts the parameter selection and the ciphertext size. Larger ciphertext sizes result in higher
bandwidth consumption and longer delays.

Figure 5 shows results in terms of communicated ciphertext size for three cases where 1, 2, or
5 multiplications could be done on the ciphertext. We experiment with different data collection
frequencies to find the optimal data collection frequencies in terms of bandwidth consumption
efficiency. Figure 5 specifies the results for the suggested data collection frequencies using dark-
shaded diamonds. The other results from this figure that are specified using solid circles have
not used the recommended data collection frequencies, thus ciphertexts were communicated with
many more empty slots, which resulted in wasting bandwidth resources. Table 5 summarizes
the parameters used in each case.

When only 1 multiplication is required, from Table 1, we select the first row where n = 1024.
In this case, we attempt to find the data report granularity that results in filling most of the
ciphertext slots such that the least ciphertext space is wasted. If the frequency of filling the
slots is 1.13, 1017 out of 1024 slots are filled, while if we fill a slot per second, 900 out of 1024
slots are filled. Hence, we recommend the frequency of filling slots to be 1.13. Supporting one
multiplication, from Figure 5, we observe that when data collection frequency is up to 1.13, the
communicated ciphertext size is 442.368 KB. If one decides to increase the frequency of filling the
slots to have finer data report granularity, we recommend the frequencies of filling the slots to
be 2.27, 4.55, or 10.24. If the frequency of filling the slots is 2.27, a smart meter requires to send
two ciphertexts every 15 minutes, and 2043 out of 2048 slots will be filled; the communicated
ciphertext size will be 884.736 KB. If we increase the frequency of filling the slots to 4.55, a
smart meter will transmit 4 ciphertexts per 15 minutes where 4095 out of 4096 slots will be
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Table 5: Benchmark parameters
Case I II III

# Mul. 1 2 5
n 1024 4096 8192

log(q) 27 109 218

filled, and the communicated ciphertext size is 1769.472 KB. Finally, if we further increase the
frequency of filling the slots to 10.24, each smart meter will communicate 9 ciphertexts every
15 minutes and all the 9216 slots will be filled, i.e., no ciphertext slot is wasted; this results in
3981.42 KB of communicated ciphertext size.

If the ciphertext can support 2 multiplications, we select the third row from Table 1 where
n = 4096. In this case, we recommend the frequencies of filling the slots to be 4.55, 9.10, or
13.65. If this frequency is 4.55, 4095 out of 4096 slots will be filled and the communicated
ciphertext size is 7143.424 KB. If the frequency of filling the slots is 9.10, a smart meter will
send 2 ciphertexts every 15 minutes where 8190 out of 8192 slots will be filled; the communicated
ciphertext size will be 14286.848 KB. Finally, if the frequency of filling the slots is 13.65, 12285
out of 12288 slots will be filled and the communicated ciphertext size is 21430.272 KB. In case
the ciphertext can support 5 multiplications, we choose the parameters according to the fourth
row of Table 1 where n = 8192 and Figure 5 reports the trade-offs for different frequencies of
filling the slots. From Figure 5, we suggest the frequencies of filling the slots to be 9.10, 18.00,
or 27.00. When we select 9.10, a smart meter will send 1 ciphertext per 15 minutes and 8190
out of 8192 slots of that ciphertext will be filled; the communicated ciphertext size is 28573.696
KB. If the smart meter increases the frequency of filling the slots to 18.00, the smart meter
needs to send 2 ciphertexts every 15 minutes and can fill all the 16384 slots; the communicated
ciphertext size will be 57147.392 KB. Finally, if the smart meter fills the slots with the higher
frequency of 27.00, it will require to communicate 3 ciphertexts per 15 minutes and all the 24576
slots could be filled; the communicated ciphertext size will be 85721.088 KB.

6.5 Communication Delay
We saw from figure 5 that for different data collection frequencies, different number of cipher-
texts were communicated. Therefore, Figure 6 reports the communication delay from the smart
meters to the eNB when different numbers of ciphertexts are communicated supporting 1, 2,
or 5 homomorphic multiplications. We noted from Figure 5 that the ciphertext size increases
when more homomorphic multiplications are supported. Using this figure, if we compare the
cases where 2 multiplications are supported with the case where 1 multiplication is supported,
we observe in average 16 times longer communication delays. Using Figure 5, we can also com-
pare the case of 5 supported multiplications with 2 supported multiplications, and understand
that the communication delay increases approximately 4 times in average. Furthermore, for
each of the considered cases (supporting 1, 2, or 5 multiplications), when more ciphertexts are
communicated, we see from Figure 6 that the communication delays increases.

6.6 Computation Delay
Table 6 presents the latencies of CKKS from SEAL v3.7.2 [38], and Paillier and BGN imple-
mented in RELIC v0.5 [39].

We used the parameter sets described in Table 5 for the CKKS, offering support to respec-
tively 1, 2, and 5 homomorphic multiplications with at least a 128-bit security level, as presented
in Table 3. In comparison, we instantiate Paillier with log(n2) = 6144, which offers a similar
security level as presented in Table 4, and BGN over the elliptic curve BLS12-381. CKKS is
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the clear winner in performance for both homomorphic addition and multiplication. For case I
supporting an unlimited number of additions, CKKS is up to 3 times faster than the competi-
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Table 6: Number of cycles for the execution of homomorphic operations on Paillier, BGN,
and CKKS on a Skylake Core i7 6700K@4GHz for parameters supporting of 1, 2 and 5
multiplications (cases I, II and III respectively). A dash means that the configuration is
not supported.

Operation Case
Addition I II III
Paillier 33,112 - -
BGN 39,623 - -

CKKS 13,920 107,600 424,000
Multiplication I II III

Paillier - - -
BGN 12,798,243 - -

CKKS 70,000 500,000 2,088,000

tion, and up to 6 times faster for case III supporting 5 multiplications in comparison to BGN
supporting a single one.

7 Conclusions
We considered a fog-based smart grid architecture in which smart meters use cellular communi-
cation infrastructure to communicate with a fog node that receives and processes smart meters’
data. We proposed a lattice-based HE method for encryption of smart meters’ data such that
when the fog node receives the encrypted smart meters’ data, it can homomorphically perform
different computations, which differ in terms of the required number of multiplications on the
encrypted data. The considered services include billing, variance, and non-linear SVM classifi-
cation that require 1, 2, and 5 multiplications, respectively. We measured the ciphertext size
for these statistical operations and based on analysis suggested the smart meter data report fre-
quencies that optimally fill most of the slots of the CKKS ciphertext. Furthermore, we reported
the communication delays of transmitting the considered ciphertext sizes from the smart meters
to the eNB. We have also shown that the proposed HE method significantly outperforms Paillier
and BGN cryptosystems in terms of computational overhead for homomorphic multiplication
and addition operations. Our future work includes the implementation of MPC and VC methods
and measuring their practical trade-offs.
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Chapter 3

Discussion

The papers presented in the previous Chapter contemplate mainly two directions: protocol
proposal and implementation techniques on GPUs. Together, they present contributions
toward different aspects of developing privacy-preserving algorithms.

We propose directives to model a searchable encrypted database by defining the needed
relational algebra and looking for the underlying support of functional encryption schemes.
In the same way, we investigate how this class of cryptographic schemes can assist in
instantiating a privacy-oriented smart meter network, in which data can be handled en-
crypted during its entire existence, and a verifiable computation scheme can assert its
integrity. In both cases, we aim to develop high-level solutions that consider decryption a
sensitive operation that shall be avoided as much as possible. Thus, classical techniques
common in the literature, such as online computation involving iterations between nodes
in a network composed of decryption-encryption cycles, are never considered by our works.

Our solutions are evaluated mainly by developing simulations based on real-world
scenarios. For example, in the work presented in Section 2.1, we explore the case of the
famous Netflix Grand Prize. At the time, Netflix was looking for solutions to improve
their recommendation algorithm to infer user predilection by analyzing their history in
the platform. In 2007, 2008, and 2009, contests were proposed to the community, and the
solutions compared regarding performance, latency, and the quality of the outcome when
evaluated on a public test set. In our work, we select the winner solution proposed by
BellKor’s Pragmatic Chaos team, and we build the main SQL queries needed to implement
it using our algebra. On the smart meter network work, we propose a communication
protocol that can be used so that a grid of devices may execute smart functionalities while
never manipulating plaintext data. To evaluate our proposal, we implement it on an NS3
simulation that measures such setup’s bandwidth, latency, and processing implication.

Those two works observe the complexity of these solutions from a high-level point of
view and consider that the heavy computational tasks are done by powerful devices like
GPUs. Thus, a different facet of the problem approached by this thesis is the efficient
design for implementing a cryptographic scheme that provides the required functionality
on a high level and fits the processing hardware. Two other works discuss this matter.
In the first, presented in Section 2.2, we present efficient techniques for implementing
BFV, a homomorphic encryption scheme, on CUDA. We show how data structure must
be designed to better fit the architecture challenges, considering both computation and
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Figure 3.1: Contributions to research on privacy-preserving computing. The gray boxes
relate to areas that were benefited from our contributions.

memory paradigms. We also revisit a classical method proposed by Bailey [10] to imple-
ment FFT-based techniques on memory constrained devices. We show how it can be used
to improve the suitability of DGT to the limitations of a CUDA block, the basic thread
structure used to guide the parallelism of a GPU, on an algorithm refereed as Hierarchi-
cal DGT (HDGT). This work demonstrates that we achieved a significant performance
improvement compared to other literature works. However, a weakness of the research
is that it does not isolate each implementation technique, making it impossible to con-
clude how better, if better at all, is the DGT over the commonly used NTT to accelerate
polynomial multiplication.

The following work, presented in Section 2.3 tries to address that question. We de-
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veloped two mirror CUDA-based implementations of the CKKS cryptosystem, differing
only in the underlying transform: one runs polynomial multiplication through NTT, as
commonly observed in the literature, and the other does that through the DGT. Dif-
ferent experiments were executed to highlight the differences each transform causes in
the library on different levels. We compare execution latencies for various layers, from
the direct comparison of the transforms to their effect on a more complex algorithm, as
the logistic regression inference executed homomorphically. We observed that the DGT
is a solution that better fits the GPU since its associated data structure implies higher
arithmetic density and enhances the rate of dual-issued instructions.

These works, combined, present important contributions to different levels of the im-
plementation of privacy-preserving solutions on real-world cases. With our proposals,
legacy software can be adapted to process complex queries over encrypted data without
additional hardware or software investment. Furthermore, these proposals connect with
solutions developed for more constrained devices, like IoT, which may be able to encrypt
data by running architecture-specific libraries, such as SEAL Embedded [26], submit
HE-enabled ciphertexts to fog nodes that run powerful GPUs and, by implementing the
solutions discussed in Sections 2.2 and 2.3, process them keeping its secrecy, and relay the
outcome to powerful central stations where more it can be evaluated on complex machine
learning algorithms, as described in Sections 2.1 and 2.4.

Still, our works don’t consider an important problem of employing HE in the real
world, as how to assert data integrity on homomorphic encrypted data and achieve non-
repudiation and integrate it with privacy-preserving algorithms. These are still open
problems, and the impact of available solutions on such protocols must be investigated.
The malleability of HE ciphertexts imposes the need for proof that a message was indeed
produced and manipulated as expected. Without that, there is no way, for instance, for
someone to assert if a received ciphertext is a result of malicious behavior on a protocol.
A verifier must exist and must be able to ensure that an energy bill was calculated as a
sequence of additions of the measures provided by the user meter.
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Chapter 4

Conclusion

This thesis contains significant contributions to the field of privacy-preserving computing.
Our research covers a wide range of topics, from database encryption to the implementa-
tion of fully homomorphic encryption schemes on GPUs. In addition, our findings have
underscored the importance of open science practices to enhance the quality of scientific
research.

The presented papers offer contributions to many areas, from techniques for low-level
implementation on GPUs to investigating how the proposals available in the literature
can assist with complex protocols. For example, we propose a framework for database
encryption that preserves the search capability, we investigate techniques for the efficient
implementation of FHE schemes on CUDA, and we discuss the problem of building a
privacy-oriented network of smart electricity meters.

During the execution of this work, we produced theoretical material and released
several open-source libraries to be used as proof of concept by the scientific community.
This thesis’ development made clear to me the importance of that. Code releasing assists
and encourages reproducibility and may enhance the quality of the following research.
Furthermore, it frequently may guide an interested reader, clarify obscure parts of the
paper, and offer a practical insight into the solution’s applicability. By avoiding the
need to re-implement code, one may more easily stand on the shoulders of Giants 1 and
produce greater contributions to privacy-preserving computers. Thus, we encourage future
researchers to adopt open science ideas and publicly disclosure source codes, datasets, and
research papers.

We believe that the results presented in Section 2.3, regarding the suitability of DGT
as the preferred solution to accelerate polynomial multiplication, considerably improve
the discussion on low-level implementation decisions. However, its scope is limited to
the CKKS and does not consider other LWE and RLWE-based schemes. One of them is
TFHE, a promising HE scheme that has presented low-latency homomorphic operations
and a novel and impressive programmable bootstrap procedure, which allows the evalu-
ation of univariate functions. At the same time, the ciphertext noise is reset, allowing
further homomorphic operations [13]. Future works should investigate how the different
parameter settings may affect the performance of the transforms and their fitness to the

1As stated by Sir Isaac Newton in a letter to Robert Hooke, in 1675, regarding how he succeeded in
achieving his scientific contributions to so many fields.
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GPU. Moreover, schemes not dependent on the RNS representation, and consequently ba-
sis extension methods, will also avoid difficulties common to CKKS, such as the frequent
data switch in and out of the transform domain.

In the same way, the work in Section 2.1 targets mainly read-only use cases. In
databases with volatile records, which must be frequently updated, we would have to
handle major performance bottlenecks to update records and rebuild the database index.
In that case, the database index requires a key refreshment algorithm to avoid the risk
of persistent passive attacks, as discussed in the paper. Moreover, it does not deeply
explore NoSQL DBMSs, as graph databases. These do not necessarily correlate support
operations to a relational algebra, thus future work must adapt the described techniques.

Lastly, the reason for anyone to explore HE and functional encryption schemes is to
develop real-world solutions capable of protecting data secrecy. However, data malleability
is an inherent problem for these schemes. Thus, verifiable computation schemes must be
further developed to support the evaluation of more complex arithmetic circuits. In our
research, the works available in the literature offered limited computation capability, as
discussed in Section 2.4.
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that implies IFCA endorsement of a product or service of an employer, and that the
copies themselves are not offered for sale.
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Creative Commons Legal Code

Attribution-NonCommercial 4.0 International

Official translations of this license are available in other languages.

Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal

services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-

client or other relationship. Creative Commons makes its licenses and related information available

on an “as-is” basis. Creative Commons gives no warranties regarding its licenses, any material

licensed under their terms and conditions, or any related information. Creative Commons disclaims all

liability for damages resulting from their use to the fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that creators and

other rights holders may use to share original works of authorship and other material subject to

copyright and certain other rights specified in the public license below. The following considerations

are for informational purposes only, are not exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are intended for use by those authorized to give

the public permission to use material in ways otherwise restricted by copyright and certain other

rights. Our licenses are irrevocable. Licensors should read and understand the terms and conditions

of the license they choose before applying it. Licensors should also secure all rights necessary before

applying our licenses so that the public can reuse the material as expected. Licensors should clearly

mark any material not subject to the license. This includes other CC-licensed material, or material

used under an exception or limitation to copyright.

Considerations for the public: By using one of our public licenses, a licensor grants the public

permission to use the licensed material under specified terms and conditions. If the licensor’s

permission is not necessary for any reason–for example, because of any applicable exception or

limitation to copyright–then that use is not regulated by the license. Our licenses grant only

permissions under copyright and certain other rights that a licensor has authority to grant. Use of the

licensed material may still be restricted for other reasons, including because others have copyright or

other rights in the material. A licensor may make special requests, such as asking that all changes be

marked or described. Although not required by our licenses, you are encouraged to respect those

requests where reasonable.
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Creative Commons Attribution-NonCommercial 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms

and conditions of this Creative Commons Attribution-NonCommercial 4.0 International Public License

("Public License"). To the extent this Public License may be interpreted as a contract, You are granted

the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the

Licensor grants You such rights in consideration of benefits the Licensor receives from making the

Licensed Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or

based upon the Licensed Material and in which the Licensed Material is translated, altered,

arranged, transformed, or otherwise modified in a manner requiring permission under the

Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the

Licensed Material is a musical work, performance, or sound recording, Adapted Material is always

produced where the Licensed Material is synched in timed relation with a moving image.

b. Adapter's License means the license You apply to Your Copyright and Similar Rights in Your

contributions to Adapted Material in accordance with the terms and conditions of this Public

License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright

including, without limitation, performance, broadcast, sound recording, and Sui Generis Database

Rights, without regard to how the rights are labeled or categorized. For purposes of this Public

License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper

authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO

Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation

to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which the

Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of this

Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the

Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. NonCommercial means not primarily intended for or directed towards commercial advantage or

monetary compensation. For purposes of this Public License, the exchange of the Licensed

Material for other material subject to Copyright and Similar Rights by digital file-sharing or similar

means is NonCommercial provided there is no payment of monetary compensation in connection

with the exchange.

j. Share means to provide material to the public by any means or process that requires permission

under the Licensed Rights, such as reproduction, public display, public performance, distribution,

dissemination, communication, or importation, and to make material available to the public

Creative Commons — Attribution-NonCommercial 4.0 ... https://creativecommons.org/licenses/by-nc/4.0/legalcode

2 of 7 4/7/23, 18:44

126



including in ways that members of the public may access the material from a place and at a time

individually chosen by them.

k. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC

of the European Parliament and of the Council of 11 March 1996 on the legal protection of

databases, as amended and/or succeeded, as well as other essentially equivalent rights

anywhere in the world.

l. You means the individual or entity exercising the Licensed Rights under this Public License. Your

has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a

worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the

Licensed Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial

purposes only; and

B. produce, reproduce, and Share Adapted Material for NonCommercial purposes only.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations

apply to Your use, this Public License does not apply, and You do not need to comply with its

terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise

the Licensed Rights in all media and formats whether now known or hereafter created, and to

make technical modifications necessary to do so. The Licensor waives and/or agrees not to

assert any right or authority to forbid You from making technical modifications necessary to

exercise the Licensed Rights, including technical modifications necessary to circumvent

Effective Technological Measures. For purposes of this Public License, simply making

modifications authorized by this Section 2(a)(4) never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material

automatically receives an offer from the Licensor to exercise the Licensed Rights under the

terms and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms

or conditions on, or apply any Effective Technological Measures to, the Licensed Material if

doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission

to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or

sponsored, endorsed, or granted official status by, the Licensor or others designated to receive

attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.
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1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are

publicity, privacy, and/or other similar personality rights; however, to the extent possible, the

Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited

extent necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the

exercise of the Licensed Rights, whether directly or through a collecting society under any

voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor

expressly reserves any right to collect such royalties, including when the Licensed Material is

used other than for NonCommercial purposes.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to

receive attribution, in any reasonable manner requested by the Licensor (including by

pseudonym if designated);

ii. a copyright notice;

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous

modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,

or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the

medium, means, and context in which You Share the Licensed Material. For example, it may

be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that

includes the required information.

3. If requested by the Licensor, You must remove any of the information required by Section

3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter's License You apply must not prevent

recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.
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Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the

Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and

Share all or a substantial portion of the contents of the database for NonCommercial purposes

only;

b. if You include all or a substantial portion of the database contents in a database in which You have

Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights

(but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the

contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under

this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the

Licensor offers the Licensed Material as-is and as-available, and makes no representations

or warranties of any kind concerning the Licensed Material, whether express, implied,

statutory, or other. This includes, without limitation, warranties of title, merchantability,

fitness for a particular purpose, non-infringement, absence of latent or other defects,

accuracy, or the presence or absence of errors, whether or not known or discoverable.

Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not

apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory

(including, without limitation, negligence) or otherwise for any direct, special, indirect,

incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or

damages arising out of this Public License or use of the Licensed Material, even if the

Licensor has been advised of the possibility of such losses, costs, expenses, or damages.

Where a limitation of liability is not allowed in full or in part, this limitation may not apply to

You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a

manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver

of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.

However, if You fail to comply with this Public License, then Your rights under this Public License

terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:
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1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your

discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to

seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate

terms or conditions or stop distributing the Licensed Material at any time; however, doing so will

not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions communicated

by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated

herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce,

limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be

made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be

automatically reformed to the minimum extent necessary to make it enforceable. If the provision

cannot be reformed, it shall be severed from this Public License without affecting the

enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented to

unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of,

any privileges and immunities that apply to the Licensor or You, including from the legal processes

of any jurisdiction or authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may

elect to apply one of its public licenses to material it publishes and in those instances will be

considered the “Licensor.” The text of the Creative Commons public licenses is dedicated to the

public domain under the CC0 Public Domain Dedication. Except for the limited purpose of indicating

that material is shared under a Creative Commons public license or as otherwise permitted by the

Creative Commons policies published at creativecommons.org/policies, Creative Commons does not

authorize the use of the trademark “Creative Commons” or any other trademark or logo of Creative

Commons without its prior written consent including, without limitation, in connection with any

unauthorized modifications to any of its public licenses or any other arrangements, understandings,

or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph does
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not form part of the public licenses.

Creative Commons may be contacted at creativecommons.org.

Additional languages available: ةیبرعلا , čeština, Dansk, Deutsch, Ελληνικά, Español, euskara,

suomeksi, français, Frysk, hrvatski, Bahasa Indonesia, italiano, ⽇本語, 한국어, Lietuvių, latviski, te

reo Māori, Nederlands, norsk, polski, português, română, русский, Slovenščina, svenska, Türkçe,

українська, 中⽂, 華語. Please read the FAQ for more information about official translations.
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International Financial Cryptography
Association

Copyright Form

Policy on copyrights and publication

In connection with its publishing activities, it is the policy of the International
Financial Cryptography Association (hereinafter referred to as "IFCA") to own the
copyrights to all copyrightable material in its technical publications and to the
individual contributions contained therein, in order to promote research in
Financial Cryptography, to protect the interests of the IFCA, its authors and their
employers, and, at the same time, to facilitate the appropriate archiving and
distribution of this material by others. The IFCA currently contracts with a
commercial publisher to distribute its technical publications throughout the world,
using various means such as traditional paper printing, Internet distribution, and
CD-ROM media. IFCA may also abstract and translate its publications, and articles
contained therein, for inclusion in various compendiums and similar publications,
etc. When an article is submitted to the IFCA for publication, the author implicitly
consents that the IFCA has the rights to do all of these things.

Policy on Public Dissemination

This policy applies to all material submitted to IFCA: The IFCA must of necessity
assume that material presented at its meetings or submitted to its publications is
properly available for general dissemination to the world. It is the responsibility of
the authors, not the IFCA, to determine whether disclosure of their material
requires the prior consent of other parties and, if so, to obtain it.

Furthermore, the IFCA must assume, if authors use within their article material
that has been previously published and/or is copyrighted by another party, that
permission has been obtained for such use and that any required credit lines,
copyright notices, etc., are duly noted.

IFCA Obligations

In exercising its rights under this agreement, the IFCA will make all reasonable
efforts to act in the interests of the authors and employers as well as in its own
interest. In handling third-party republication requests for an IFCA work, the IFCA
requires that the consent of the first-named author be sought as a condition in
granting republication (of a full paper) to others.; and 2) the consent of the
employer be obtained as a condition in granting permission to others to reuse all or
portions of a paper for promotion or marketing purposes.

Author/Company Rights

If you are employed and you prepared your paper as a part of your job, the rights
to your work may rest initially with your employer. In that case, when you sign the
copyright and consent to publish agreement, IFCA assumes you are authorized to
do so by your employer and that your employer has consented to all the terms and
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conditions of this form. If not, it should be signed by someone so authorized. (See
also the Public Dissemination policy above.)

Joint Authorship

For jointly authored works, all of the joint authors should sign, or one of the
authors should sign as an authorized agent for the others. In the case of multiple
authorship where one or more authors are signatories under Part II of this
copyright transfer form, but at least one author is not, the non-signatory of that
Part should sign Part I of this copyright transfer form.
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The undersigned hereby assigns all copyright rights in and to the above work to
The International Financial Cryptography Association (hereinafter referred to as
"IFCA"). The undersigned also represents and warrants that the work is original
and that the undersigned is the author of the work, except possibly for material
such as text passages, figures, and data that clearly identify the original source,
with permission notices from the copyright owners where required. The
undersigned also represents possession of the power and authority to make and
execute this assignment.

In return for these rights, the IFCA recognizes the retained rights noted in Items 1
and 4 below, and grants to the above authors and employers for whom the work
may have been performed a royalty-free license to use the material as noted in
Items 2, 3, and 4. Item 6 stipulates that authors and employers must seek
permission to republish in cases not covered by Items 2, 3, 4, and 5.

1.  Employers (or authors) retain all proprietary rights in any process, procedure,
or article of manufacture described in the work.

2.  Authors/employers may reproduce or authorize others to reproduce the above
work, material extracted verbatim from the above work, or derivative works for the
author's personal use or for company use provided that the source and the IFCA
copyright notice are indicated, that the copies are not used in any way that implies
IFCA endorsement of a product or service of an employer, and that the copies
themselves are not offered for sale.

3.  Authors may publish their contributions on their respective personal Web pages
after the conclusion of the Conference to which their papers have been accepted,
subject to the restriction that it should carry a prominent copyright notice of the
form "© IFCA" to indicate that the copyright for this contribution is held by IFCA.
In addition, because IFCA uses a commercial publisher to distribute its work, it is
suggested that authors include a link to the primary source of publication, which at
this time is http://www.springer.de/comp/lncs/index.html.

4. Authors/employers may make limited distribution of all or portions of the above
work prior to publication provided they inform the IFCA of the nature and extent of
such limited distribution and gain the consent of IFCA prior thereto.

5. IFCA recognizes that work performed under a Government contract or grant
may require that the Government retain royalty-free permission to reproduce all or
portions of the above work, and to authorize others to do so, for Official
Government purposes only. IFCA further recognizes that certain non-Government
contracts or grants may have similar requirements. In either case, appropriate
documentation may be attached, but IFCA's Copyright Form MUST BE SIGNED.

6. For all circumstances not covered by Items 2, 3, 4, and 5, authors/employers
must request permission from the IFCA to reproduce or authorize the reproduction
of the work or material extracted verbatim from the work.
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PART II to be completed in case an author is a Government
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Authors who are Government employees in jurisdictions which preclude the
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Form, but any non-Government coauthors are required to sign Part I (see Joint
authorship above).

Authors whose work was performed under a Government contract or grant, but
who are not Government employees, are required to sign Part I of this form. (Note:
If your work was performed under Government contract but you are not a
Government employee, sign Part I of this form and see item 5).

This will certify that all authors of the above work are employees of the
Government and performed this work as part of their Official duties and that the
work is therefore not subject to copyright protection.
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Authorized Signature Date
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Country
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