
Faster Homomorphic Encryption over GPGPUs
via hierarchical DGT

Pedro Geraldo M. R. Alves1(�) , Jheyne N. Ortiz1 , and
Diego F. Aranha2

1 University of Campinas, Campinas, Brazil
{pedro.alves, jheyne.ortiz}@ic.unicamp.br

2 Aarhus University, Aarhus, Denmark
dfaranha@cs.au.dk

Abstract. Privacy guarantees are still insufficient for outsourced data
processing in the cloud. While employing encryption is feasible for data
at rest or in transit, it is not for computation without remarkable perfor-
mance slowdown. Thus, handling data in plaintext during processing is
still required, which creates vulnerabilities that can be exploited by ma-
licious entities. Homomorphic encryption schemes enable computation
over ciphertexts without knowing the related plaintexts or the decryp-
tion key. This work focuses on the challenge of developing an efficient
implementation of the BFV scheme on CUDA. This is done by com-
bining and adapting different literature approaches, as the double-CRT
representation and the Discrete Galois Transform. Moreover, we propose
and implement an improved formulation of the DGT inspired by clas-
sical algorithms, which computes the transform up to 2.6 times faster
than the state-of-the-art. By using these approaches, we obtain up to 3.6
times faster homomorphic multiplication.

Keywords: Fully Homomorphic Encryption · BFV · CUDA · Polynomial mul-
tiplication · Privacy-preserving computing

1 Introduction

With the growing data collection by governments and companies, protecting its
secrecy becomes as important as processing and extracting useful information.
However, how to efficiently collect and compute user data without undermining
their privacy is an open problem. System breaches may happen even when data
holders choose the most conservative practices and never share data intentionally.

The Breach Level Index provides distressful statistics about data leakage. It
states that most breaches occur by accidental loss on leaving plaintext data ex-
posed inadvertently. However, attacks from malicious parties, which explore vul-
nerabilities to subvert security mechanisms, are also far from negligible [27]. Data
can be protected by encryption even in case of leakage. However, encryption-
decryption cycles during its lifespan create a weak point in the system’s security.

https://orcid.org/0000-0002-7175-8383
https://orcid.org/0000-0001-7152-2103
https://orcid.org/0000-0002-2457-0783

2 P. Alves et al.

Hence, building the system founding attached to mathematical guarantees and
dispensable decryption is the only way to achieve reliable security.

Homomorphic Encryption (HE) schemes enable data processing while pro-
tecting its confidentiality. They allow the evaluation of arithmetic circuits over
ciphertexts by a third party without any knowledge of the corresponding plain-
texts or the decryption key, preventing the computation’s inputs and outcome
to be learned. Hence, HE is a natural candidate for solving privacy issues caused
by malicious third parties, careless administrators, or other security flaws during
the processing, such as side-channel vulnerabilities.

Many of the HE schemes available in the literature rely on the hardness of the
Ring-Learning with Errors (RLWE) problem. The RLWE assumption offers a
strategy for protecting messages, encoded as polynomials in Rq = Zq[x]/(f(x)),
by adding noise in a way that it can only be removed when given a trapdoor.
There are several recent proposals following this approach in cryptosystems such
as BFV [19], CKKS [11], and TFHE [12]. All depend on polynomial arithmetic
as the main building block, so its efficient and reliable implementation is critical
for adopting HE schemes in real-world scenarios.

CUDA is an important tool for the efficient implementation of polynomial
arithmetic. It is a SIMD architecture developed and maintained by NVIDIA
for employing the data parallelism potential of a GPU in tasks beyond graph-
ical processing. However, the particularities of CUDA impose challenges for its
cryptographic use. Its processing flow demands careful planning to align possi-
ble conditional branches with certain thread groups, and its memory paradigm
considers several structures with different dimensions and latency characteris-
tics, separated from the machine’s main memory. Moreover, at this point, no
general-purpose cryptographic library or polynomial arithmetic framework sup-
ports CUDA. Hence, these constraints motivate the development of a complete
toolkit to work as an arithmetic engine aimed at RLWE-based cryptosystems.

Our contributions. This work presents mathematical tools and techniques
for the efficient implementation of the BFV scheme in CUDA. We follow the
literature by employing the Residue Number System (RNS) as the best approach
for handling the multiprecision arithmetic required by the cryptosystem, and
the Halevi, Polyakov, and Shoup modification of BFV to solve the division and
rounding problem in the RNS domain [7,22]. The main contributions of this
study are:

– A novel hierarchical formulation of the Discrete Galois Transform (DGT)
that offers about two times lower latency on GPUs than the best version
previously available in the literature. Moreover, we collect evidence that
suggests it is faster than the commonly used Number Theoretic Transform
(NTT) due to its lower memory bandwidth requirement. Such formulation
is inspired by Bailey’s version of the Fast Fourier Transform [5].

– Compatible choice of parameters between the DGT and the RNS represen-
tation. We show that the double-CRT representation proposed by Gentry et
al. is a better implementation design than the usual approach of working
with Mersenne or Solinas primes in different rings [8].

Faster Homomorphic Encryption over GPGPUs via hierarchical DGT 3

– A more efficient and polynomial-oriented state machine which reduces the
need for moving data in and out of the DGT domain and between the main
memory and the GPU global memory.

These contributions are not limited to the BFV cryptosystem and can be
easily applied to other RLWE-based schemes, such as CKKS. Moreover, we pro-
vide latency benchmarks from a proof-of-concept implementation named spog,
which was built based on the methods above. Two relevant works employing
the DGT are considered for comparison with our results: Badawi, Polyakov,
Aung, Veeravalli, and Rohloff [2]; and Badawi, Veeravalli, Mun, and Aung [4].
When considering homomorphic multiplication as the main performance-critical
operation, spog offers higher performance against these works, surpassing a
3.6-factor performance improvement against the latter.

2 Mathematical background

The efficient implementation of an RLWE-based cryptosystem on CUDA re-
quires carefully designed building blocks for adjusting the operations to the
architecture’s limitations. The BFV cryptosystem, as well as and other HE pro-
posals, relies on large parameters for achieving proper security levels. This im-
poses a challenge in the light of GPGPUs’ 3 constraints, for both the size of
the coefficients, much larger than the native integer instruction set; and the
polynomial arithmetic, that requires highly-optimized algorithms to reduce the
computational complexity and improve the scalability of expensive operations,
such as polynomial multiplication.

This Section describes the Fan and Vercauteren cryptosystem; presents the
Residue Number System (RNS) representation, used to avoid the multiprecision
arithmetic; and introduces the Discrete Galois Transform (DGT), a more suitable
variant of the Fast Fourier transform (FFT) to GPU implementation.

2.1 The BFV cryptosystem

Fan and Vercauteren proposed a variant of Brakerski’s homomorphic cryptosys-
tem, nowadays referred to as BFV, that relies on the hardness of the Ring-
Learning With Errors (RLWE) problem [19]. Classified as a leveled homomorphic
encryption scheme (LHE), it is currently one of the most efficient cryptosystems
of its class concerning speed and memory consumption and remains untouched
by recent advances in cryptanalysis [1,14].

Let p > 1 be an integer and n a power-of-2. BFV’s basic arithmetic is built
upon polynomial rings of the form Rp = Zp[X]/(Xn+1). The scheme defines the
following parameter set: a security parameter λ; a decomposition base ω > 1;
the modulus t ≥ 2 that determines the plaintext domain Rt; and the modulus
q � t that determines the ciphertext domain Rq. Moreover, it makes use of

3 GPGPU, acronym for General-Purpose Graphics Processing Unit.

4 P. Alves et al.

an error distribution χerr, usually a zero-mean discrete Gaussian distribution
parameterized by the standard deviation σ.

Let l = blogω qc. The main procedures of BFV are the following:

KeyGen(λ, ω): Let sk← R2 be the secret key. Sample a← Rq uniformly at ran-
dom and e← χerr, and define the public key pk = (b, a) = ([−(a · sk + e)]q , a).
Generate the evaluation key evk as: Sample ai ← Rq uniformly at ran-
dom, ei ← χerr, and compute γi =

(
[−(ai · sk + ei) + ωi · sk2]q,ai

)
. Define

evk =
⋃l

i=0 γi. Output (sk, pk, evk).

Encrypt(m, pk): for a plaintext message m ∈ Rt and a public key pk = (b, a),
sample u ← R2 uniformly at random and e1, e2 ← χerr, and compute the

ciphertext c =
(

[∆m+ b · u+ e1]q , [a · u+ e2]q

)
, where ∆ = bq/tc.

Decrypt(c, sk): for a ciphertext c = (c0, c1) and the secret key sk = s, recover

the plaintext m =
[⌊

t
q [c0 + c1 · s]q

⌉]
t
.

Add(c0, c1) : for ciphertexts c0 = (c0,0, c0,1) and c1 = (c1,0, c1,1), compute
cadd = ([c0,0 + c1,0]q , [c0,1 + c1,1]q).

Relin((c0, c1, c2), evk) : for c0, c1, c2 ∈ Rq, evk = (b,a), and a decomposition

of c2 in base w such that c2 =
∑l

i=0 c
(i)
2 wi, return([

c0 +
∑l

i=0 bi · c(i)2

]
q
,
[
c1 +

∑l
i=0 ai · c(i)2

]
q

)
.

Mul(c0, c1, evk) : for ciphertexts c0 = (c0,0, c0,1) and c1 = (c1,0, c1,1), compute

c =

([⌊
t
q · c0,0 · c1,0

⌉]
q
,
[⌊

t
q · (c0,0 · c1,1 + c0,1 · c1,0)

⌉]
q
,
[⌊

t
q · c0,1 · c1,1

⌉]
q

)
and return cmul = Relin(c, evk).

2.2 Residue Number System

As can be observed in Section 2.1, BFV depends upon computationally ex-
pensive polynomial operations. Moreover, the literature reveals that big integer
arithmetic is required to offer proper security levels [26]. A common strategy in
implementations of BFV is to use the Chinese Remainder Theorem (CRT) on
the Residue Number System (RNS) to map large integers to a set of smaller
residues capable of being evaluated by processor native instructions [17,7].

Definition 1 (CRT). Let x be a polynomial in Rq, and {p0, . . . , p`−1} a set of
pairwise coprimes. The CRT decomposition results in a set X with ` residues
such that CRT(x) =

{
[x]p0 , . . . , [x]p`−1

}
. The inverse CRT(X) is defined as:[∑`−1

i=0
M
pi
·
[(

M
pi

)−1

Xi

]
pi

]
M

= x, where M =
∏`−1

i=0 pi.

Addition and multiplication in the RNS domain work by applying the operation
residue-wise. However, division and modular reduction are more complicated
and require a more advanced technique, as described next.

Faster Homomorphic Encryption over GPGPUs via hierarchical DGT 5

2.3 Division and rounding inside the RNS domain

Some parts of BFV are hardly compatible with RNS, such as coefficient-wise
division and rounding used in decryption and homomorphic multiplication. Mo-
tivated by that, two variants of BFV can be found in the literature, BEHZ-BFV
and HPS-BFV, which propose modifications to the cryptosystem to support
them in the RNS domain [6,22].

Let Q = {q0, q1, . . . , q`−1} be a RNS basis which we can use to represent
any ciphertext, as described in Section 2.2. BEHZ-BFV and HPS-BFV claim
that the division and rounding can be computed by extending base Q to a new
basis B = {b0, b1, . . . , bk−1} such that

∏
qi <

∏
bj . While BEHZ-BFV looks

for an exact rounding, HPS-BFV shows how to build operations to minimize
the error and merge it into the natural cryptosystem noise. This allows a much
simpler procedure, with a lower computation cost, to be used. HPS-BFV’s au-
thors present a performance analysis that demonstrates that their procedures
are simpler and have lower complexity and noise growth than those proposed by
Bajard et al. .

The HPS-BFV methods are composed by a basis extension procedure, which
computes a polynomial representation in a base B from its representation in base
Q; and two scaling methods to scale down and round an integer in its RNS repre-
sentation by t/q, one to be used on decryption, which is a more straightforward
scenario that requires the output to be in base {t}, and one for homomorphic
encryption, which is a bit more complicated since the outcome must lie in base
B.

Both variants of BFV take the fact that q is not defined as a prime integer.
Thus, they represent and work with Rq polynomials in an RNS base composed

by a factorization of q, i.e. q =
∏`−1

i=0 qi. One of the advantages of doing this is
the automatic merge of the RNS bounds with the ciphertext coefficient domain.

2.4 Discrete Galois Transform

The Fast Fourier Transform (FFT) is a well-known method that offers linear
computational cost for polynomial multiplication when the operands lie in its
domain and quasi-linear when considering the computation of the transform it-
self. However, the FFT is defined on C, which makes it harder for its direct
applicability in the context of RLWE-based cryptosystems, defined on integer
domains. Thus, variations offering the same functionality but built upon inte-
ger arithmetic were proposed in the literature, such as the Number Theoretic
Transform (NTT) over GF (p), and the Discrete Galois Transform (DGT) over
GF (p2), for some convenient choice of a prime number p [24,15].

The main difference of DGT over NTT is caused by their domains, which
results in memory bandwidth savings, as deeply discussed in Sections 3 and 4.
Despite this, they are sufficiently similar so that they share computation data
paths and their efficient implementation strategies. Furthermore, as GF (p2) can
be represented in the set of Gaussian integers Zp[i] = {a+ ib | a, b ∈ Zp}, it uses
finite field arithmetic with Zp elements as building blocks, which resonates with

6 P. Alves et al.

the representation used by RNS and BFV. In Definition 2 we introduce the base
formulation, as done in [3].

Definition 2 (Discrete Galois Transform). Let p ≥ 3 be a prime number,
x = {x0, . . . , xn−1} be a vector of length n such that xi ∈ GF (p2) for 0 ≤ k < n,
and g be an n-th primitive root of unity in GF (p). Then, the DGT and its inverse

are defined as: Xk =
∑n−1

j=0 xjg
−jk ∈ GF (p2) and xk = n−1

∑n−1
j=0 Xjg

jk ∈
GF (p2), respectively.

3 Efficient CUDA operation on cyclotomic rings

An efficient implementation of the arithmetic of cyclotomic polynomial rings
requires a convenient approach for polynomial multiplication and a proper data
representation, not only with low computational complexity but also that fits
well in the processing hardware. This Section provides optimization strategies
for implementing polynomial arithmetic on CUDA.

3.1 Fast polynomial multiplication

The complexity to compute a polynomial multiplication using a textbook for-
mula is Θ

(
n2
)

for n-degree polynomials, which means that performance will be
seriously affected with the increase of the degree.

In the context of cryptosystems based on RLWE, as observed by Lindner and
Peikert, security is strongly related to the degree of the polynomial ring [23].
Specifically on BFV, Player concludes that a parameter set nowadays consid-
ered secure, with an estimated security upper bound close to λ = 128, requires
n between 211 and 215 [26]. Hence, an efficient implementation of polynomial
multiplication for operands with a large degree is vital for the cryptosystem’s
performance.

FFT-based transforms, such as the NTT, provide a domain in which the
polynomial multiplication complexity is reduced to Θ (n), and among those,
the DGT is a promising variant defined over GF (p2). As introduced in Sec-
tion 2.4, this field can be represented as the set of Gaussian integers Zp[i] =
{a+ ib | a, b ∈ Zp}, which enables the polynomial folding of inputs and con-
sequently halves their degree. This folding works such that, for a polynomial

P (x) =
∑n−1

j=0 aj · xj , we have fold(P (x)) =
∑n/2−1

j=0 (aj + i · aj+n/2) · xj , for

i =
√
−1.

Considering the use of Gaussian integer arithmetic, as defined in Appendix A,
a first impression may be that the increased cost of the arithmetic nullifies the
reduction of the polynomial degree due to the quadratic extension. However,
it is important to notice that, by working with half the coefficients, only half
the roots, like those in Definition 2, are required compared to the FFT NTT.
In this way, in a memory-constrained scenario, this property implies a speedup
caused by fewer memory accesses and enables a more coalesced pattern. In the
case of CUDA, such operations may target the GPU’s global memory, which is

Faster Homomorphic Encryption over GPGPUs via hierarchical DGT 7

significant in size but has high latency, or even shared or constant memories,
which are fast but very small. The resulting increased arithmetic density favors
GPU implementations.

Badawi et al. propose Algorithm 1 for polynomial multiplication through the
DGT. It first folds both input signals and then applies a twisting by powers of
n/2-th primitive roots of i, which provides a negacyclic convolution. This equips
the algorithm with a free polynomial reduction by a cyclotomic polynomial [15].
Finding these roots is a complex computational task usually performed by brute
force when p is sufficiently small. Otherwise, numerical methods may be used.
We offer in Appendix C a suggestion for their construction.

Algorithm 1: Polynomial multiplication in Zp[x]/(xn + 1) via DGT

Input: Polynomials a, b ∈ Zp[x]/(xn + 1), p a prime number, n a power-of-two
integer, and h a primitive n

2
-th root of i modulo p.

Output: c = a · b ∈ Zp[x]/(xn + 1).
1 for j = 0; j < n/2; j = j + 1 do
2 a′j = aj + iaj+n/2 // Folding the input polynomials

3 b′j = bj + ibj+n/2

4 for j = 0; j < n/2; j = j + 1 do
5 a′j = hj · a′j (mod p) // Applying the right-angle convolution

6 b′j = hj · b′j (mod p)

7 a′ = DGT(a′) // Computing the DGT of both operands

8 b′ = DGT(b′)
9 for j = 0; j < n/2; j = j + 1 do

10 c′j = a′j · b′j (mod p) // Component-wise multiplying in Zp[i]
11 c′ = IDGT(c′) // Computing the IDGT of the multiplication result

12 for j = 0; j < n/2; j = j + 1 do
13 u = h−j · c′j (mod p) // Removing the twisting factors

14 cj = ure // Unfolding the output polynomial

15 cj+n
2

= uim

16 return c

There is no need for the bit-reversal procedure in the context of implement-
ing a polynomial multiplication. Thus, an efficient implementation avoids it by
selecting a decimation-in-frequency (DIF) algorithm for the forward transform
and a decimation-in-time (DIT) algorithm for the inverse, as defined by Chu and
George [13]. At this work, we follow the proposal of Badawi et al. and choose
the Gentleman-Sande, a DIF, and the Cooley-Tukey, a DIT, data-paths for the
forward and inverse versions of the DGT, respectively [3].

The canonical formulation of these contains a combination of three nested
loops, which increases the complexity of its implementation, especially on the
CUDA architecture. This structure creates dependencies between the loops and
disturbs parallel execution. So, for better compatibility with the programming
model, they have to be rewritten by wiping out one layer of nesting and leaving
only two loops, an outer loop related to the stride and an inner loop that asserts
the access patterns. For each outer loop iteration, the inner one can be completely

8 P. Alves et al.

parallelized. Our proposals for these have a much weaker dependency between
iterations and can be seen in Algorithms 2 and 3.

Algorithm 2: Rewritten forward DGT via Gentleman-Sande

Input: A folded vector x ∈ Z[i]k, p a prime number, k a power-of-two integer,
and g a primitive k-th root of unity modulo p.

Output: x← DGT(x) in bit-reversed ordering.
1 for s = 0; s < blog(k)c; s = s+ 1 do
2 m = k

2(s+1)

3 for l = 0; l < k/2; l = l + 1 do
4 j = 2ml

k

5 i = j +
(
l mod k

2m

)
· 2m

6 a = g
j· k

2(log(k)−s) (mod p)
7 (u, v) = (x[i], x[i+m])
8 (x[i], x[i+m]) = (u+ v, a · (u− v)) (mod p)

9 return x

Algorithm 3: Rewritten inverse DGT via Cooley-Tukey

Input: A vector x ∈ Z[i]k in bit-reversed order, p a prime number, k a
power-of-two integer, and g a primitive k-th root of unity modulo p.

Output: x← IDGT(x) in standard ordering.
1 m = 1
2 for s = 0; s < blog(k)c; s = s+ 1 do
3 for l = 0; l < k/2; l = l + 1 do
4 j = 2ml

k

5 i = j +
(
l mod k

2m

)
· 2m

6 a = g
−j· k

2s+1 (mod p)
7 (u, v) = (x[i], x[i+m])
8 (x[i], x[i+m]) = (u+ a · v, u− a · v) (mod p)

9 m = 2 ·m
10 return x · k−1 (mod p)

3.2 An improved and hierarchical DGT

The procedures described in Algorithms 2 and 3 require synchronization at the
end of each iteration of the outer loop. On CUDA, this enforces a limitation
on the polynomial degree at the cost of latency, since the only data structure
that provides such a level of synchronicity is Thread Blocks, and its dimension
is limited to 1024 threads in modern hardware. An alternative implementation
involves calling a different CUDA kernel for each iteration, imposing a CPU-
sided synchronization. This incurs a considerable overhead caused by several
kernel calls.

In this scenario, we propose a technique for splitting the DGT transform
into smaller blocks that better fit the processing hardware and does not require
synchronizing large sets of threads, called hierarchical DGT. It is an adaptation

Faster Homomorphic Encryption over GPGPUs via hierarchical DGT 9

of the four-step FFT algorithm, initially proposed by David H. Bailey and later
on revisited by Govindaraju et al. [5,21].

The general idea of the hierarchical DGT and hierarchical inverse DGT,
referred to respectively as HDGT and HIDGT, is to split the DGT computation
over Zp[x]/(xn + 1) into computations in smaller rings with optimal degree near√
n. In practice, the vector of coefficients is treated as a matrix and the DGT is

performed over the columns and rows of this matrix. The objective of this is to
avoid the case in which one is unable to compute the DGT of an entire polynomial
in a single CUDA kernel call. We move to a higher granularity approach in which
we apply the transform multiple times over arbitrary small polynomials that can
perfectly fit in our processing architecture.

The HDGT is described in Algorithm 4. Firstly, the polynomial a(x) is rep-
resented by taking its coefficient embedding as a = (a0, a1, . . . , an−1). To be
represented in the DGT domain GF (p2), a ∈ Zn

p is folded as a (n/2)-size vector

of Gaussian integers ã ∈ Zp[i]n/2, as described in Section 3.1. In the Algorithm,
the “right-angle” convolution is given by multiplying the j-th coefficient of ã by
hj , for j ∈ Zn/2, where h is the (n/2)-th primitive root of i in Zp[i].

After the folding and twisting procedures, the (n/2)-length vector of Gaussian
integers ã is treated as a matrix with dimensions (Nr, Nc). These dimensions shall
be chosen so that each coefficient’s subset fits in the processing hardware. In our
case, the objective is to find a subset that fits in the GPU’s shared memory so
that the DGT can be performed in a single Thread Block.

Since the bit-reversal is not used in Algorithm 2, the called “step-2” of Bai-
ley’s method has to be rewritten. In line 8, the twiddle factors are the powers of
g, the (n/2)-th root of unity modulo p. Since the output of the DGT is not cor-
rected from the bit-reversed order, the twiddle factors become gbit-reversal(j)·k

instead of gj·k, which matches the position of the corresponding element in ã
when it is seen as a matrix.

The inverse counterpart of the hierarchical DGT simply executes the in-
verse steps of the forward transform, and is described in Algorithm 5. It adopts
the IDGT transform via Cooley-Tukey, described in Algorithm 3, without bit-
reversing the input vector. The algorithm executes the inverse steps of the for-
ward transform by first applying the IDGT over the rows of ã. The twiddle
factors are removed by multiplying âj,k by g−bit-reversal(j)·k, since the column
indexes of the output of the previous step still are in bit-reversed order. Consid-
ering that the powers of g can be precomputed, they can be multiplied by N−1

c ,
avoiding the additional multiplication. Finally, the IDGT is applied over the
columns of â and the matrix indexes are back to standard ordering. Following
the same approach, the powers of h−1 can be precomputed already multiplied
by the scalar N−1

r . This avoids the multiplication by the scaling factor when
applying the IDGT over the columns of â.

As in FFT and NTT, the two operands are evaluated using the HDGT
for further point-wise multiplication. The polynomial corresponding to a · b in
Zp[x]/(xn + 1) is obtained by computing the HIDGT.

10 P. Alves et al.

Algorithm 4: Hierarchical forward DGT

Input: A polynomial a ∈ Zp[x]/(xn + 1), p a prime number, n = 2 ·Nr ·Nc a
power-of-two integer, h a primitive n/2-th root of i modulo p, and g a
primitive n/2-th root of unity modulo p.

Output: ã = HDGT(a).
1 for j = 0; j < n/2; j = j + 1 do
2 ãj = aj + iaj+n/2 // Fold the input polynomial

3 ãj = ãj · hj (mod p) // Twist the folded polynomial

4 for k = 0; k < Nc; k = k + 1 do
5 ã ,k = DGT(ã ,k) // Step 1: Apply the DGT through Nc columns

6 for j = 0; j < Nr; j = j + 1 do
7 for k = 0; k < Nc; k = k + 1 do

8 ãj,k = ãj,k · gbit-reversal(j)·k (mod p) // Step 2: Multiplication by

the twiddle factors in bit-reversal order

9 for j = 0; j < Nr; j = j + 1 do
10 ãj, = DGT(ãj,) // Step 3: Apply the DGT through the Nr rows

11 return ã

Algorithm 5: Hierarchical inverse DGT

Input: ã = HDGT(a), p a prime number, n = 2 ·Nr ·Nc a power-of-two
integer, h a primitive n/2-th root of i modulo p, and g a primitive
n/2-th root of unity modulo p.

Output: A polynomial a ∈ Zp[x]/(xn + 1).
1 for j = 0; j < Nr; j = j + 1 do
2 âj, = IDGT(ãj,) // Step 3: Apply IDGT to each of Nr rows

3 for j = 0; j < Nr; j = j + 1 do
4 for k = 0; k < Nc; k = k + 1 do

5 âj,k = âj,k · g−bit-reversal(j)·k ·N−1
c (mod p) // Step 2: Remove

twiddle factors

6 for k = 0; k < Nc; k = k + 1 do
7 â ,k = IDGT(â ,k) // Step 1: Apply IDGT to each of Nc columns

8 for j = 0; j < n/2; j = j + 1 do
9 âj = âj · h−j ·N−1

r (mod p) // Remove the twisting

10 aj = âjre // Unfold the output polynomial

11 aj+n
2

= âjim
12 return a

3.3 Polynomial representation and memory locality

The usability of an RLWE-based cryptosystem requires the careful selection
of a parameter set that satisfies all the security constraints of the application.
For instance, with BFV one must select q, t, n, and σ such that a security
level λ is achieved. More than that, these parameters together determine the
multiplicative depth supported by the scheme. Thus, as discussed by Fan and

Faster Homomorphic Encryption over GPGPUs via hierarchical DGT 11

Vercauteren, the selection of such parameters is too complex to be affected by
the particularities of the implementation [19].

A constraint for choosing those is the hardware instruction set. By selecting a
big q one may be confronted by the lack of hardware support for native processing
of the coefficients. Through RNS, as described in Section 2.2, we handle this by
splitting big integers in small residues following the limits of the underlying
machine.

The link between the cryptosystem and RNS must be carefully designed so
that data secrecy is provided with suitable performance. For that, Gentry et
al. suggested the double-CRT representation, which encapsulates data into two
layers [20]. The first layer is the RNS representation, as described in Definition 1.
After that, a set of polynomial residues with full support for native hardware
evaluation of addition and multiplication is obtained. However, we still need a
second layer for the latter, since the multiplication of polynomials can achieve a
quite high computational complexity without some well-designed algorithm, as
mentioned in Section 3.1. Because of that, the second layer consists of moving
each residue, individually, to a different domain with a convenient property for
efficient polynomial multiplication. The original proposal of double-CRT is the
use of the NTT as this transform, but a similar approach using the FFT would
also be expected. This work, however, proposes that the second layer of the
double-CRT should use the DGT instead of the NTT, since the former appears
to suit much better the cyclotomic ring arithmetic and uses memory in a more
efficient way [3].

Another design decision, widespread to HE implementations, is the selection
of a single special prime p for the transform and all RNS residues [16,18,3]. For
instance, let x be a polynomial and {q0, . . . , q`−1} a set of ` pairwise coprimes,
then

{
DGTp([x]q0), . . . ,DGTp([x]q`−1

)
}

is the set of transformed residues. By
using such a prime, one is capable of taking advantage of their intrinsic math-
ematical properties, as in the selection of a Mersenne or Solinas prime, which
enables the use of a very efficient modular reduction. Nonetheless, this approach
does not interplay well with the RNS layer and requires algorithmic efforts to
correct these modular reductions and keep consistency for each residue. In this
way, the double-CRT provides a simpler solution by computing the transform
layer using the coprime related to each residue, at the cost of a more expensive
modular reduction since, in most cases, there are not enough special primes for
the required number of residues. Thus, in this representation, the set of residues
becomes

{
DGTq0([x]q0), . . . ,DGTq`−1

([x]q`−1
)
}

. Moreover, without the need for
those corrections, we become capable of increasing RNS’ residues to the biggest
supported word size of the target architecture, reducing the number of residues
needed. By choosing q =

∏`−1
i=0 qi we establish a bond between BFV, RNS, and

the DGT.

Lastly, our state machine proposal targets the insistent maintenance of data
in our version of the double-CRT representation in GPU’s memory. Data copy
between the main memory and the GPU’s memory has high latency and must
be avoided.

12 P. Alves et al.

4 Experimental results

In this section we present spog4, a proof-of-concept implementation that con-
solidates the aforementioned techniques by exploring parallel processing on GP-
GPUs through CUDA. Parts of the source code allowing reproducibility are in
the process of being made available to the community.

Designed from scratch, spog is a modular implementation in which the
arithmetic operations are separate from the cryptosystem. More precisely, the
polynomial operations were implemented on a sister library named cuPoly,
while BFV was implemented separated on spog. Both are implemented on top
of CUDA and closely follow the sketch provided in Section 3, pursuing low-
latency methods with a simple API and stretching the size of the residues to the
highest supported by modern CUDA-supported GPUs, which is 63-bit residues
with 1 bit for storing the sign. By doing this, we guarantee that BFV can be
easily replaced by any other scheme based on the RLWE problem; thus, our
work is not restricted to a single scheme. The entire arithmetic implementation
can also be replaced without affecting the cryptosystem code. Hence, spog is
flexible enough to encourage future work to develop and test different setups
using the presented libraries.

cuRAND, a NVIDIA probabilistic library, was used for the sampling required
by the BFV. This library offers sampling directly to the GPU memory, avoid-
ing the cost of data copy. Sampling uniformly at random from Rq and R2 is
implemented through its uniform sampler, and the result is reduced by q or 2,
respectively. On the other hand,the discrete Gaussian distribution is not sup-
ported by this library. Because of that, an alternative implementation works by
truncating a normal distribution, natively supported by cuRAND. The statisti-
cal validity of this design still needs to be asserted at the cost of compromising
the security. Moreover, to the best of our knowledge, cuRAND lacks sufficient
scrutiny by the scientific community so that it can be seen as cryptographic
secure. However, this is a common implementation decision in the literature and
is also done by the related works cited in Section 4.1.

4.1 Related work

We consider Badawi, Polyakov, Aung, Veeravalli, and Rohloff, work, referred
as BPAVR, the state-of-the-art implementation in GPUs for BFV [2]. It com-
plements Halevi, Polyakov, and Shoup proposal and provides the first imple-
mentation of the HPS-BFV method on a high-end NVIDIA Tesla V100 GPU,
demonstrated by the authors to be the fastest and most scalable variant of the
scheme when compared to BEHZ-BFV [22,6].

BPAVR do not describe all details regarding their performance results, only
presenting latency measurements for decryption and homomorphic multiplica-
tion. Because of that, and the fact of their source code is not publicly avail-
able, we also consider a similar work of Badawi, Veeravalli, Mun, and Aung,

4 spog, acronym for “Secure Processing on GPGPUs”.

Faster Homomorphic Encryption over GPGPUs via hierarchical DGT 13

which offers timings for encryption, decryption, homomorphic addition, and ho-
momorphic multiplication for a CUDA-based BFV implementation, denoted by
BVMA[4]. The authors compare BVMA with Microsoft SEAL, a reference on
the field with support for HPS-BFV [10]; and NFLlib-FV, an equally important
work implementing the BEHZ-BFV variant; with impressive speedups on all sce-
narios [25]. Despite of their efforts for parallel computation, the other libraries
presented in that work are CPU-based implementations and thus show a signif-
icant slowdown, up to 27 times, when compared to BVMA. Hence, we do not
believe that the direct comparison with spog is relevant to this paper.

Lastly, both works apply the DGT as the underlying solution to handle poly-
nomial multiplication. So, by comparing spog with them, we can collect evi-
dence about the suitability of the HDGT over the DGT for such task.

4.2 Execution environment, methodology, and BFV parameters

The experimental results presented in the next Sections for BPAVR or BVMA
are those reported by the authors in their corresponding publications. We do
not re-execute the benchmarks provided in the related work. This decision is
based on the fact that the implementations and benchmarking tools were not
made available to the community. Because of that, we decided to collect our
measurements in a similar processing hardware adopted in the related works
using the same parameters.

We used Google Cloud’s virtual machines (VMs) for emulating the compu-
tational environment described in those works. Two instances were considered:
gc.k80 and gc.v100 , which provide a NVIDIA Tesla K80 GPU, used on BVMA
measurements; and a NVIDIA Tesla V100 GPU, used on BPAVR. We precisely
followed the execution environment described in each work, running GCC 7.2.1
and CUDA 8.0 at gc.k80 ; and GCC 7.3.1 and CUDA 9.0 at gc.v100 . CUDA
events were used to measure execution time, following the common methodol-
ogy from the literature.

Our benchmark targets the most relevant primitives for HE. Regarding BFV,
implemented in spog, we consider encryption, decryption, homomorphic addi-
tion, and homomorphic multiplication (including the relinearization cost). On
the polynomial arithmetic side, implemented in cuPoly, we focus on the per-
formance gains caused by the replacement of the canonical DGT by the HDGT.

In our measurements, we do not include initialization steps, which are per-
formed only once and have negligible effect on long term runs. Because of that,
the latency for generating cryptographic keys is not described in this work. Sim-
ilarly, sampling is not explicitly considered in the benchmarks, despite of being
included in the timings for encryption.

Two different setups are considered for compatibility with each work, both
choosing t = 256 for the plaintext domain.

BPAVR parameters: Different polynomial ring settings are used identified
by the pairs (q, log(n)) ∈ {(60, 11), (60, 12), (120, 13), (360, 14), (600, 15)}
for the ciphertext coefficient domain and the ring degree, respectively. These
offer a security level of at least 128 bits [2].

14 P. Alves et al.

BVMA parameters: Different polynomial ring settings are used identified by
the pairs (q, log(n)) ∈ {(62, 11), (186, 12), (372, 13), (744, 14), (744, 15)} for
the ciphertext coefficient domain and the ring degree, respectively. These
offer a security level of 80 bits [4].

4.3 Memory consumption

Let q̂ and b̂ be the main and auxiliary RNS bases used to represent elements of
Rq and used by the HPS-BFV methods described in Section 2.3, respectively;

and nresqb the quantity of elements in q̂ ∪ b̂. A BFV ciphertext on spog is
composed by two N -degree polynomials represented as nresqb residues with
63-bits coefficients, thus requiring s(N, nresqb) := 63 · (2 ·N · nresqb) bits for
storage.

The ciphertext expansion factor, however, depends also on its slot occupancy.
Through batching, a single ciphertext can store up to N integer plaintexts [9].

Hence, the expansion factor is given by
s(N,nresqb)
63·batch size

.

4.4 SPOG operations

In Table 1 we compare spog with BVMA on gc.k80 , and with BPAVR on
gc.v100 . As mentioned in Section 4.1, The authors of BPAVRoffer measure-
ments for decryption and homomorphic multiplication only, what inhibits the
comparison with spog for encryption and homomorphic addition.

One of the major motivations for using a FHE scheme is the applicability
of its homomorphic primitives, and because of that, we focus on improving the
performance of these. As can be seen, homomorphic multiplication, a critical and
known expensive operation, reports speedup between 2.0 and 3.6 times when
compared to the BVMA. When compared to the BPAVR these speedups lies
between 2 and 2.4. The different characteristics between both setups, considering
the processing hardware and the cryptosystem parameters, makes the direct
comparison between both data sets impossible, however the performance gains
are consistent.

Homomorphic addition, a much simpler operation, presented gains between
2 and 5.2 times when compared to the BVMA. The latter is probably not related
to the HDGT, since this procedure is essentially a coefficient-wise addition, but
to the better state machine our version of the double-CRT offers, as described
at Section 3.3.

Despite our focus in this work does not being on encryption and decryption,
the faster polynomial multiplication strategy and the improved state machine
offered up to 4.6 times faster encryption and about 2 times faster decryption.

4.5 Efficiency of the HDGT

A major contribution of this work is the HDGT, a novel formulation of the
DGT which better explores the parallel capability of GPUs and compensate its

Faster Homomorphic Encryption over GPGPUs via hierarchical DGT 15

Table 1. Comparison between spog and two state-of-the-art implementations,
BVMA and BPAVR. Average running time of 100 independent executions, in millisec-
onds, for the most relevant BFV operations on gc.k80 and gc.v100 virtual machines
for the setups described in Section 4.2.

gc.k80 gc.v100
logn 11 12 13 14 logn 12 13 14 15

spog 0.303 0.309 0.575 1.630 - - - - -
Encrypt BVMA 0.541 1.440 2.645 6.657 - - - - -

Ratio 1.785 4.660 4.600 4.084 - - - - -

spog 0.089 0.098 0.191 0.542 spog 0.029 0.031 0.049 0.099
Decrypt BVMA 0.151 0.194 0.252 0.610 BPAVR 0.054 0.059 0.087 0.111

Ratio 1.697 1.980 1.319 1.125 Ratio 1.862 1.903 1.776 1.121

spog 0.009 0.010 0.021 0.066 - - - - -
Hom. Add. BVMA 0.037 0.052 0.068 0.127 - - - - -

Ratio 4.111 5.200 3.238 1.924 - - - - -

spog 0.926 1.214 3.061 13.914 spog 0.423 0.472 0.823 2.325
Hom. Mul. BVMA 3.343 3.873 7.700 28.953 BPAVR 0.859 1.012 2.010 4.826

Ratio 3.610 3.190 2.516 2.081 Ratio 2.031 2.144 2.442 2.076

memory limitations. However, a carefully evaluation of its quality must be done
to understand the performance gains on realistic scenarios. Thus, at this Sec-
tion, we provide a comparison between the HDGT and the best implementation
designs for the canonical DGT.

As discussed before, the HDGT works by splitting a high-degree polyno-
mial, which does not fit in the processing hardware, and applying the DGT
in a divide-and-conquer approach through blocks of arbitrarily small size. To
evaluate this design, we implemented the canonical DGT adopting two different
strategies, namely DGT-I and DGT-II. The former uses a multi-kernel design
which executes the loop synchronization employing a different CUDA kernel for
each iteration. This way, the transformation requires log n

2 kernels to process
an n-degree polynomial. The latter uses a single-kernel design, which is only
compatible with polynomial rings with degree smaller or equal than 4096 since
these are the only that fit GPU’s shared memory. These strategies are better
described in Section 3.2. Lastly, we verified the impact of this change in two
important procedures direct affected by the DGT, encryption and homomorphic
multiplication.

Table 2 presents the latency measurements. The HDGT is about 2 times
faster than the DGT-I, which results in speedups ranging from 1.4 to 2.2 times on
BFV’s primitives. The DGT-II, though, presents a slowdown in most cases. This
relates to the need for serialization within HDGT’s steps, which was implemented
by splitting the algorithm into 4 sequential kernels. DGT-II is always executed
by a single kernel, implying a much smaller overhead. This suggests that the
single-kernel design better accommodates smaller instances. Such effect doesn’t
sustain on gc.v100 that better handles the high-granularity of the HDGT. No

16 P. Alves et al.

other comparison is feasible with the DGT-II since this model is not scalable to
bigger rings.

Table 2. Comparison between spog running the canonical DGT using a multi-kernel
and a single-kernel strategy, called DGT-I and DGT-II, respectively; and the HDGT.
The first row group compares the transform alone. Average running time of 100 inde-
pendent executions, in milliseconds, on gc.k80 and gc.v100 virtual machines for the
setups described in Section 4.2.

gc.k80 gc.v100
logn 11 12 13 14 15 11 12 13 14 15

DGT

HDGT 0.059 0.071 0.146 0.432 0.651 0.018 0.019 0.020 0.031 0.073

DGT-I 0.114 0.131 0.281 0.711 1.637 0.035 0.034 0.040 0.078 0.188
Ratio 1.934 1.864 1.925 1.644 2.517 1.934 1.815 2.040 2.487 2.593

DGT-II 0.052 0.091 - - - 0.026 0.047 - - -
Ratio 0.881 1.292 - - - 1.423 2.492 - - -

Encrypt

HDGT 0.303 0.309 0.575 1.630 3.127 0.103 0.098 0.099 0.153 0.315

DGT-I 0.571 0.499 0.861 2.597 5.835 0.144 0.146 0.159 0.287 0.704
Ratio 1.882 1.614 1.499 1.593 1.866 1.395 1.498 1.615 1.883 2.238

DGT-II 0.276 0.377 - - - 0.120 0.188 - - -
Ratio 0.910 1.220 - - - 1.163 1.921 - - -

HDGT 0.926 1.214 3.061 13.914 28.990 0.436 0.423 0.472 0.823 2.325

Hom. DGT-I 1.795 2.031 4.231 19.952 42.800 0.795 0.783 0.913 1.609 4.078
Mult. Ratio 1.938 1.673 1.382 1.434 1.476 1.825 1.850 1.934 1.956 1.754

DGT-II 0.642 0.983 - - - 0.362 0.466 - - -
Ratio 0.693 0.810 - - - 0.830 1.102 - - -

5 Conclusion

This work investigates strategies to achieve an efficient implementation of the
leveled homomorphic encryption scheme BFV on the CUDA architecture. To ful-
fill this objective, we explored different approaches for the utilization of the DGT
in the reduction of the computational complexity of polynomial multiplications.
The outcome is an optimized version of the hierarchical DGT, a high granularity
implementation of DGT that better fits the GPU processing. Furthermore, the
double-CRT concept is revisited and an efficient state machine is proposed so we
can avoid the costs to alternate between DGT and RNS domains, and between
the machine’s main memory and GPU’s memory.

Our implementation of BFV, named spog, is compared with two other
works in the literature, BVMA and BPAVR, that represent the state-of-the-art
implementations on CUDA. Homomorphic addition, in spite of being a sim-
ple and usually fast operation, presented speedups between 2 and 5.2 times over
the BVMA. Furthermore, spog’s homomorphic multiplication showed itself be-
tween 2.0 and 3.6 times faster over the BVMA.

As future work, we intend to verify the gains of applying our methods on
other relevant RLWE-based cryptosystems such as the CKKS [11], and spog
as a tool for the acceleration of privacy-focused deep learning algorithms.

Faster Homomorphic Encryption over GPGPUs via hierarchical DGT 17

Acknowledgements

This work was supported in part by CNPq, grants number 164489/2018-5,
203175/2019-0, and 44265/2019-2; CAPES grant number 1591123. We specially
thank LG for financial support within project “Privacy-preserving analytics”,
project number 5296; and Google for GCP Research Credits Program under
number 106101194491.

References

1. Albrecht, M., Bai, S., Ducas, L.: A Subfield Lattice Attack on Overstretched NTRU
Assumptions. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO
2016. pp. 153–178. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

2. Badawi, A.A., Polyakov, Y., Aung, K.M.M., Veeravalli, B., Rohloff, K.: Imple-
mentation and performance evaluation of RNS variants of the BFV homomorphic
encryption scheme. IACR Cryptol. ePrint Arch. 2018, 589 (2018)

3. Badawi, A.Q.A., Veeravalli, B., Aung, K.M.M.: Efficient Polynomial Multiplication
via Modified Discrete Galois Transform and Negacyclic Convolution. In: AISC.
vol. 886, pp. 666–682. Springer, Cham (2019)

4. Badawi, A.Q.A., Veeravalli, B., Mun, C.F., Aung, K.M.M.: High-Performance FV
Somewhat Homomorphic Encryption on GPUs: An Implementation using GPUs.
TCHES 1(2), 70–95 (2018)

5. Bailey, D.H.: FFTs in external or hierarchical memory. J. Supercomput. 4(1), 23–
35 (1990)

6. Bajard, J., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: SAC. Lecture Notes in Computer
Science, vol. 10532, pp. 423–442. Springer (2016)

7. Bajard, J.C.J., Meloni, N., Plantard, T.: Efficient RNS bases for Cryptography.
IMACS World Congress: Scientific Computation, Applied Mathematics and Sim-
ulation (2005)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic En-
cryption without Bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1–13:36
(2014)

9. Chen, H., Gilad-Bachrach, R., Han, K., Huang, Z., Jalali, A., Laine, K., Lauter,
K.E.: Logistic regression over encrypted data from fully homomorphic encryption.
IACR Cryptol. ePrint Arch. 2018, 462 (2018)

10. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1.
IACR Cryptol. ePrint Arch. 2017, 224 (2017)

11. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-
metic of approximate numbers. In: ASIACRYPT (1). Lecture Notes in Computer
Science, vol. 10624, pp. 409–437. Springer (2017)

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

13. Chu, E., George, A.: Inside the FFT black box: serial and parallel fast Fourier
transform algorithms. CRC press (1999)

14. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption
scheme is best? In: CT-RSA. Lecture Notes in Computer Science, vol. 9610, pp.
325–340. Springer (2016)

18 P. Alves et al.

15. Crandall, R.E.: Integer convolution via split-radix fast Galois transform. Center
for Advanced Computation Reed College (1999)

16. Dai, W., Sunar, B.: cuHE: A Homomorphic Encryption Accelerator Library. In:
BalkanCryptSec. Lecture Notes in Computer Science, vol. 9540, pp. 169–186.
Springer (2015)

17. Ding, C., Pei, D., Salomaa, A.: Chinese remainder theorem: applications in com-
puting, coding, cryptography. World Scientific (1996)

18. Emmart, N., Weems, C.C.: High precision integer multiplication with a GPU using
strassen’s algorithm with multiple FFT sizes. Parallel Process. Lett. 21(3), 359–375
(2011)

19. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012, 144 (2012)

20. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: CRYPTO. Lecture Notes in Computer Science, vol. 7417, pp. 850–867. Springer
(2012)

21. Govindaraju, N.K., Lloyd, B., Dotsenko, Y., Smith, B., Manferdelli, J.: High perfor-
mance discrete fourier transforms on graphics processors. In: SC. p. 2. IEEE/ACM
(2008)

22. Halevi, S., Polyakov, Y., Shoup, V.: An Improved RNS Variant of the BFV Ho-
momorphic Encryption Scheme. In: CT-RSA. Lecture Notes in Computer Science,
vol. 11405, pp. 83–105. Springer (2019)

23. Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption.
In: CT-RSA. Lecture Notes in Computer Science, vol. 6558, pp. 319–339. Springer
(2011)

24. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: CANS. Lecture Notes in Computer Science,
vol. 10052, pp. 124–139 (2016)

25. Melchor, C.A., Barrier, J., Guelton, S., Guinet, A., Killijian, M., Lepoint, T.:
NFLlib: NTT-Based Fast Lattice Library. In: CT-RSA. Lecture Notes in Computer
Science, vol. 9610, pp. 341–356. Springer (2016)

26. Player, R.: Parameter selection in lattice-based cryptography. Ph.D. thesis, PhD
thesis, Royal Holloway, University of London (2018)

27. Thales: 2019 Thales Data Threat Report. https://go.thalesesecurity.com/rs/480-
LWA-970/images/2019-DTR-Global-USL-Web.pdf, USA (2019)

28. Wuthrich, C.: Further Number Theory. https://www.maths.nottingham.ac.uk/
plp/pmzcw/download/fnt_chap5.pdf (2011), last accessed: 2020/06/18

A Gaussian integers

The set of Gaussian integers can be used to represent elements of GF (p2), that
is Zp[i] = {a+ ib | a, b ∈ Zp}, for i =

√
−1. Arithmetic in Zp[i] is similar to

complex number arithmetic with a reduction modulo p for the real and imaginary
parts.

https://www.maths.nottingham.ac.uk/plp/pmzcw/download/fnt_chap5.pdf
https://www.maths.nottingham.ac.uk/plp/pmzcw/download/fnt_chap5.pdf

Faster Homomorphic Encryption over GPGPUs via hierarchical DGT 19

Arithmetic Let a, b ∈ GF (p2). The main operations can be defined as follows:

add(a, b) = (are + bre) + i(aim + bim) mod p

sub(a, b) = (are − bre) + i(aim − bim) mod p

mul(a, b) = (arebre − aimbim) + i(arebim + aimbre) mod p

div(a, b) =
(
a · b

)
·
(
b2re + b2im

)−1
mod p

rem(a, b) = a− (a/b) · b mod p

B Properties of Gaussian integers

This Appendix presents important properties of Gaussian integers and useful
results that can be applied on their implementation. In the following, we recall
some important properties stated by Wuthrich that are useful to this work [28].

Definition 3 (Norm). The norm of a Gaussian integer is defined as its product
with its conjugate5. That is, N(a+ib) = (a+ib)·(a−ib) = a2+b2, so N(α) = α·α.

Proposition 1 (Wuthrich’s Proposition 5.7). For each prime number p ≡ 1
mod 4 there are exactly two Gaussian primes π and π of norm p.

Lemma 1 (Wuthrich’s Lemma 5.4). If π ∈ Z[i] is such that N(π) is a prime
number, then π is a Gaussian prime.

Lemma 2 (Wuthrich’s Lemma 5.6). Let p be a prime number with p ≡ 1
mod 4. Then there exists a Gaussian prime π such that p = π.π.

Lemma 3 (Wuthrich’s Lemma 5.10). Any prime p ≡ 1 mod 4 can be writ-
ten as a sum of two squares. This is a manifestation of Fermat’s theorem on
sums of two squares.

From Lemma 2 and Proposition 1, if p is prime such that p ≡ 1 mod 4, then
we know that it can be factored as a product of exactly two Gaussian primes
that are the conjugate of each other. Lemma 3 is a direct consequence since we
know that a prime p ≡ 1 mod 4 can be factored as p = π ·π and, assuming that
π = a+ bi, we obtain that π · π = a2 + b2.

C Generating k-th primitive roots of i modulo p

The use of the DGT for polynomial multiplication in a polynomial ring modulo
xn+1 requires the computation of a k-th root of i modulo a prime p, discussed in
Section 3.1. This element is used for achieving a cyclotomic polynomial reduction
for free when n is a power of two. When p is a Mersenne prime, the literature
presents efficient analytic methods; for other choices of p, the best option still is
a trial-and-error approach.

5 Let x = a+ ib be a Gaussian integer. If y is x’s conjugate then y = a− ib.

20 P. Alves et al.

Badawi et al. state that a naive implementation of such approach takes 156
hours to find a 214-th primitive root of i for p = 264 − 232 + 1 in a highly
optimized Mathematica script [3]. Because of that, they propose a more efficient
strategy, when p ≡ 1 mod 4, by factoring p in two Gaussian primes, namely
f0 and f1. This decomposition of p is quite simple and relies on Lemma 2 and
Proposition 1.

Algorithm 6: decompose in gaussian primes: Returns elements f0
and f1 such that f0 · f1 = p.

Input: A prime p
Output: Gaussian integers f0 and f1 such that f0 · f1 = p

1 do
2 n = sample(Zp)

3 while n(p−1)/2 6≡ −1 mod p

4 k = n(p−1)/4 mod p
5 u = gcd(p, k + i)
6 return (f0, f1) = (u, u)

Algorithm 6 starts from the Fermat’s Little Theorem, which states that if p
is a prime then np−1 ≡ 1 mod p for all n ∈ Zp. Hence, the square root of that
must be equivalent to either 1 or −1. In the latter case, we can find a number
k2 such that k ≡ n(p−1)/4 ≡ i mod p. In other words, if k2 ≡ −1 mod p then
k2 + 1 ≡ 0 mod p and p divides k2 + 1. Since k2 + 1 factors in (k + i) · (k − i),
we found a factorization of p.

At this point, there is no guarantee that k + i is a Gaussian prime. By
Lemma 4, we find that the greatest common divisor of p and k + i is either
k + i or that there exists some u such that u | p and u | k + i. Thus, since
u = gcd(p, k + i) results in a Gaussian prime, we take it as the first factor of p.
From Lemma 2, u is the second factor.

Lemma 4. Let p be an odd prime such that p ≡ 1 mod 4 and k ∈ Zp. The
greatest common divisor of p and k+ i is k+ i or a Gaussian prime u such that
u | p and u | k + i.

Proof. By the Fermat’s theorem on sums of two squares, we have that an odd
prime p can be expressed as p = x2 + y2, with x, y ∈ Z, if, and only if, p ≡ 1
mod 4. Since x2 + y2 = (x + iy)(x − iy) and N(x + iy) = N(x − iy) = p, then
x + iy and x − iy are Gaussian primes and p = (x + iy)(x − iy) is the unique
factorization of p in Z[i], not considering the order of the factors6.

On the other hand, we have that (k + i)(k − i) ≡ p mod p, by construction.
Combining the two facts, we obtain that p = (x + iy)(x − iy) ≡ (k + i)(k − i),
which is equivalent to (k + i)(k − i) = `(x+ iy)(x− iy), for some ` ∈ Z.

6 Wuthrich proves in Theorem 5.8 that every 0 6= α ∈ Z[i] has a unique factoriza-
tion [28].

Faster Homomorphic Encryption over GPGPUs via hierarchical DGT 21

When ` = 1, we have an equality and we find that (k + i) and (k − i) are
indeed the factors of p. When ` 6= 1, (k+i) is not a Gaussian prime and still can
be factored in Z[i]; otherwise, it would be a factor of p. We know that p divides
(k + i)(k − i) but not k + i, or its conjugate, since k < p and (k + i)/p is not a
Gaussian integer. Then, k + i and p must share a common factor u that can be
found as the greatest common divisor. Since the two factors of p are x+ iy and
x+ iy, u must be one of them.

Finally, the factors of p can be found by computing the greatest common
divisor of p and k + i and then computing its conjugate. Since p = x2 + y2 and
N(x+ iy) = N(x− iy) = x2 +y2, by Lemma 1, the factors are Gaussian primes.

Given a method for factoring a prime number p ≡ 1 mod 4 in Z[i], Badawi et
al. propose Algorithm 7, which makes much faster the step of precomputing a
k-th root of i for a prime p ≡ 1 mod 4 [3]. The method starts by finding the
factorization p = f0 · f1 ∈ Zp[i] using the Algorithm 6.

At this point, we have that each Gaussian prime fj , with j = {0, 1}, defines
a cyclic group corresponding to the set of Gaussian integers modulo fj . Then,
a k-th root of i modulo p, denoted as h, is constructed via CRT using that

hj = ζ
(p−1)

4n
j mod fj , with j = {0, 1}, where ζj is a generator for the cyclic

group j.

Algorithm 7: Compute the k-th primitive root of i mod p, for a prime
number p ≡ 1 mod 4.

Input: An integer k and a prime p ≡ 1 mod 4.
Output: The k-th primitive root of i mod p.

1 f0, f1 = decompose in gaussian primes(p)
2 do
3 for j = 0; j < 2; j = j + 1 do
4 ζj = sample generator(fj)

5 hj = ζ
b(p−1)/(4k)c
j mod fj

6 h = f1 ·
(
f−1
1 · h0 mod f0

)
+ f0 ·

(
f−1
0 · h1 mod f1

)
mod p

7 if hk ≡ i mod p then
8 return h

9 while True

	Faster Homomorphic Encryption over GPGPUs via hierarchical DGT

